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abs

Purpose Absolute value (magnitude)

Description abs is a MATLAB® function.

Examples Calculate the magnitude of the DFT of a sequence:

t = (0:99)/100; % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal
y = fft(x); % DFT of x
m = abs(y); % Magnitude
m=m(1:51); % Unique magnitudes

Plot the magnitude:

f=0:50; % Frequency vector
plot(f,m);
ylabel('Magnitude'); xlabel('Hz');
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ac2poly

Purpose Convert autocorrelation sequence to prediction polynomial

Syntax a = ac2poly(r)
[a,efinal] = ac2poly(r)

Description a = ac2poly(r) finds the linear prediction, FIR filter polynomial a
corresponding to the autocorrelation sequence r. a is the same length
as r, and a(1) = 1. The prediction filter polynomial represents the
coefficients of the prediction filter whose output produces a signal
whose autocorrelation sequence is approximately the same as the given
autocorrelation sequence r.

[a,efinal] = ac2poly(r) returns the final prediction error efinal,
determined by running the filter for length(r) steps.

Tips You can apply this function to real or complex data.

Examples Consider the autocorrelation sequence:

r = [5.0000 -1.5450 -3.9547 3.9331 1.4681 -4.7500];

The corresponding prediction filter polynomial is

[a,efinal] = ac2poly(r)
a =

1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077
efinal =

0.1791

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

See Also ac2rc | poly2ac | rc2poly
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ac2rc

Purpose Convert autocorrelation sequence to reflection coefficients

Syntax [k,r0] = ac2rc(r)

Description [k,r0] = ac2rc(r) finds the reflection coefficients k corresponding to
the autocorrelation sequence r. r0 contains the zero-lag autocorrelation.
If r is a matrix where the columns are separate channels of
autocorrelation sequences, r0 contains the zero-lag autocorrelation
coefficient for each channel. These reflection coefficients can be used
to specify the lattice prediction filter that produces a sequence with
approximately the same autocorrelation sequence as the given sequence
r.

Tips You can apply this function to real or complex data.

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

See Also ac2poly | poly2rc | rc2ac
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angle

Purpose Phase angle

Description angle is a MATLAB function.

Signal-specific
Example

Calculate the phase of the FFT of a sequence.

t = (0:99)/100; % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal
y = fft(x); % Compute DFT of x
p = unwrap(angle(y)); % Phase

Plot the phase:

f = (0:length(y)-1)'/length(y)*100; % Frequency vector
plot(f,p)
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arburg

Purpose Autoregressive (AR) all-pole model parameters estimated using Burg
method

Syntax ar_coeffs = arburg(data,order)
[ar_coeffs,NoiseVariance] = arburg(data,order)
[ar_coeffs,NoiseVariance,reflect_coeffs] = arburg(data,order)

Description ar_coeffs = arburg(data,order) returns the AR coefficients for
the input data and model order. The elements of ar_coeffs are
normalized by ar_coeffs(1). The model order requires an integer
value less than the length of the input data.

[ar_coeffs,NoiseVariance] = arburg(data,order) returns the
estimated variance NoiseVariance of the white noise input.

[ar_coeffs,NoiseVariance,reflect_coeffs] =
arburg(data,order) returns the reflection coefficients
reflect_coeffs.

Definitions AR(p) Model

In an AR model of order p, the current output is a linear combination
of the past p outputs plus a white noise input. The weights on the
p past outputs minimize the mean-square prediction error of the
autoregression. If y[n] is the current value of the output and x[n] is a
zero mean white noise input, the AR(p) model is:

y n a k y n k x n
k

p
[ ] ( ) [ ] [ ]+ − =

=
∑

1

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients
scaled by (–1). The reflection coefficients indicate the time dependence
between y[n] and y[n-k] after subtracting the prediction based on the
intervening k-1 time steps.
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Examples Generate AR(4) process and estimate coefficients:

A=[1 -2.7607 3.8106 -2.6535 0.9238];
% AR(4) coefficients
y=filter(1,A,0.2*randn(1024,1));
% Filter a white noise input to create AR(4) process
ar_coeffs=arburg(y,4);
%compare the results in ar_coeffs to the vector A.

Estimate input noise variance for AR(4) model:

A=[1 -2.7607 3.8106 -2.6535 0.9238];
% Generate noise standard deviations
% Seed random number generator for reproducible results
rng default;
noise_stdz=rand(50,1)+0.5;
for j=1:50
y=filter(1,A,noise_stdz(j)*randn(1024,1));
[ar_coeffs,NoiseVariance(j)]=arburg(y,4);
end
%Compare actual vs. estimated variances
plot(noise_stdz.^2,NoiseVariance,'k*');
xlabel('Input Noise Variance');
ylabel('Estimated Noise Variance');
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arburg

Algorithms The Burg method estimates the reflection coefficients and uses the
reflection coefficients to estimate the AR coefficients recursively. You
can find the recursion and lattice filter relations describing the update
of the forward and backward prediction errors in [1].

References [1] Kay, S.M. Modern Spectral Estimation: Theory and Application.
Englewood Cliffs, NJ: Prentice Hall, 1988, pp. 228–230.

See Also arcov | armcov | aryule | levinson | lpc
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arburg

How To • “Parametric Modeling”
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arcov

Purpose Estimate AR model parameters using covariance method

Syntax a = arcov(x,p)
[a,e] = arcov(x,p)

Description a = arcov(x,p) uses the covariance method to fit a pth order
autoregressive (AR) model to the input signal, x, which is assumed
to be the output of an AR system driven by white noise. This method
minimizes the forward prediction error in the least-squares sense. The
vector a contains the normalized estimate of the AR system parameters,
A(z), in descending powers of z. Let y(n) be a wide-sense stationary
random process obtained by filtering a white noise input with variance

e with the system function A(z). If P ey
j( ) is the power spectral density

of y(n), then:
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Because the method characterizes the input data using an all-pole
model, the correct choice of the model order p is important.

[a,e] = arcov(x,p) returns the variance estimate, e, of the white
noise input to the AR model.

See Also arburg | armcov | aryule | lpc | pcov | prony
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armcov

Purpose Estimate AR model parameters using modified covariance method

Syntax a = armcov(x,p)
[a,e] = armcov(x,p)

Description a = armcov(x,p) uses the modified covariance method to fit a pth
order autoregressive (AR) model to the input signal, x, which is
assumed to be the output of an AR system driven by white noise. This
method minimizes the forward and backward prediction errors in the
least-squares sense. The vector a contains the normalized estimate of
the AR system parameters, A(z), in descending powers of z. Let y(n) be
a wide-sense stationary random process obtained by filtering a white

noise input with variance e with the system function A(z). If P ey
j( ) is

the power spectral density of y(n):
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Because the method characterizes the input data using an all-pole
model, the correct choice of the model order p is important.

[a,e] = armcov(x,p) returns the variance estimate, e, of the white
noise input to the AR model.

See Also arburg | arcov | aryule | lpc | pmcov | prony
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aryule

Purpose Estimate autoregressive (AR) all-pole model using Yule-Walker method

Syntax ar_coeffs = aryule(data,order)
[ar_coeffs,NoiseVariance] = aryule(data,order)
[ar_coeffs,NoiseVariance,reflect_coeffs] = aryule(data,order)

Description ar_coeffs = aryule(data,order) returns the AR coefficients for
the input data and model order. The elements of ar_coeffs are
normalized by ar_coeffs(1). order is a positive integer that cannot
exceed the length of the input data.

[ar_coeffs,NoiseVariance] = aryule(data,order) returns the
estimated variance NoiseVariance of the white noise input.

[ar_coeffs,NoiseVariance,reflect_coeffs] =
aryule(data,order) returns the reflection coefficients
reflect_coeffs.

Definitions AR(p) Model

In an AR model of order p, the current output is a linear combination
of the past p outputs plus a white noise input. The weights on the
p past outputs minimize the mean-square prediction error of the
autoregression. If y[n] is the current value of the output and x[n] is a
zero-mean white noise input, the AR(p) model is:

a k y n k x n
k

p
[ ] [ ] [ ]− =

=
∑

0

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients
scaled by (–1). The reflection coefficients indicate the time dependence
between y[n] and y[n-k] after subtracting the prediction based on the
intervening k-1 time steps.
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Examples Create an AR(4) process and estimate the coefficients:

A=[1 -2.7607 3.8106 -2.6535 0.9238];
% AR(4) coefficients
y=filter(1,A,0.2*randn(1024,1));
%filter a white noise input to create AR(4) process
ar_coeffs=aryule(y,4);
%compare the results in ar_coeffs to the vector A.

Estimate model order using decay of reflection coefficients:

rng default;
y=filter(1,[1 -0.75 0.5],0.2*randn(1024,1));
%create AR(2) process
[ar_coeffs,NoiseVariance,reflect_coeffs]=aryule(y,10);
% Fit AR(10) model
stem(reflect_coeffs); axis([-0.05 10.5 -1 1]);
title('Reflection Coefficients by Lag'); xlabel('Lag');
ylabel('Reflection Coefficent');
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The reflection coefficients decay to zero after lag 2, which indicates
that an AR(10) model significantly overestimates the time dependence
in the data.

Algorithms aryule uses the Levinson-Durbin recursions on the biased estimate of
the sample autocorrelation sequence to compute the coefficients.

References Monson,H. Statistical Digital Signal Processing and Modeling, John
Wiley & Sons, 1996.
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See Also arburg | arcov | armcov | levinson | lpc

How To • “Parametric Modeling”
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bandpower

Purpose Band power

Syntax p = bandpower(x)
p = bandpower(x,fs,freqrange)

p = bandpower(pxx,f,psdflag)
p = bandpower(pxx,f,freqrange,psdflag)

Description p = bandpower(x) returns the average power in the input signal, x.

p = bandpower(x,fs,freqrange) returns the average power in the
frequency range, freqrange, specified as a two-element vector. You
must input the sampling frequency, fs, to return the power in a
specified frequency range. bandpower uses a modified periodogram to
determine the average power in freqrange.

p = bandpower(pxx,f,psdflag) returns the average power computed
by integrating the power spectral density (PSD) estimate, pxx. The
integral is approximated by the rectangle method. The input, f, is
a vector of frequencies corresponding to the PSD estimates in pxx.
psdflag is the string 'psd', which indicates the input is a PSD
estimate and not time series data.

p = bandpower(pxx,f,freqrange,psdflag) returns the average
power contained in the frequency interval, freqrange. If the
frequencies in freqrange do not match values in f, the closest values
are used. The average power is computed by integrating the power
spectral density (PSD) estimate, pxx. The integral is approximated
by the rectangle method.

Input
Arguments

x - Time series input
row or column vector

Input time series data, specified as a row or column vector

Example: cos(pi/4*(0:159))+randn(1,160)
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bandpower

Data Types
double | single
Complex Number Support: Yes

fs - Sampling frequency
1 (default) | positive scalar

Sampling frequency for the input time series data, specified as a
positive scalar.

Data Types
double | single

freqrange - Frequency range for band power computation
two-element real-valued row or column vector

Frequency range for the band power computation, specified as a
two-element real-valued row or column vector. If the input signal, x,
contains N samples, freqrange must be within the following intervals.

• [0, fs/2] if x is real-valued and N is even

• [0, (N-1)fs/(2N)] if x is real-valued and N is odd

• [-(N-2)fs/(2N), fs/2] if x is complex-valued and N is even

• [-(N-1)fs/(2N), (N-1)fs/(2N)] if x is complex-valued and N is odd

Data Types
double | single

pxx - PSD estimates
real-valued column vector with nonnegative elements

One- or two-sided PSD estimate, specified as a column vector with
nonnegative elements.

Data Types
double | single

f - Frequency vector for PSD estimates
column vector with real-valued elements
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Frequency vector, specified as a column vector. The frequency vector, f,
contains the frequencies corresponding to the PSD estimates in pxx.

Data Types
double | single

psdflag - Power spectrum input flag
'psd'

Flag indicating that the input data is a PSD estimate, specified as the
string 'psd'.

Output
Arguments

p - Average band power
nonnegative scalar

Average band power, specified as a nonnegative scalar.

Data Types
double | single

Examples Comparison with •2 Norm

Create a signal consisting of a 100-Hz sine wave in additive N(0,1)
white Gaussian noise. The sampling frequency is 1 kHz. Determine the
average power compare against the ℓ2 norm.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));
p = bandpower(x)
norm(x,2)^2/numel(x)

Percentage of Total Power in Frequency Interval

Determine the percentage of the total power in a specified frequency
interval.

Create a signal consisting of a 100-Hz sine wave in additive N(0,1)
white Gaussian noise. The sampling frequency is 1 kHz. Determine the
percentage of the total power in the [50,150] Hz interval.
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t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));
pband = bandpower(x,1000,[50 100]);
ptot = bandpower(x,1000,[0 500]);
per_power = 100*(pband/ptot)

Periodogram Input

Determine the average power by first computing a PSD estimate using
the periodogram. Input the PSD estimate to bandpower.

Create a signal consisting of a 100-Hz sine wave in additive N(0,1)
white Gaussian noise. The sampling frequency is 1 kHz. Obtain the
periodogram and use the psdflag, 'psd', to compute the average
power using the PSD estimate. Compare the result against the average
power computed in the time domain.

t = 0:0.001:1-0.001;
Fs = 1000;
x = cos(2*pi*100*t)+randn(size(t));
[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
p = bandpower(Pxx,F,'psd')
norm(x,2)^2/numel(x)

Percentage of Power in Frequency Band (Periodogram)

Determine the percentage of the total power in a specified frequency
interval using the periodogram as the input.

Create a signal consisting of a 100-Hz sine wave in additive N(0,1)
white Gaussian noise. The sampling frequency is 1 kHz. Obtain the
periodogram and corresponding frequency vector. Using the PSD
estimate, determine the percentage of the total power in the interval
[50,150] Hz.

Fs = 1000;
t = 0:1/Fs:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));
[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
pband = bandpower(Pxx,F,[50 100],'psd');
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ptot = bandpower(Pxx,F,'psd');
per_power = 100*(pband/ptot)

See Also periodogram | sfdr
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barthannwin

Purpose Modified Bartlett-Hann window

Syntax w = barthannwin(L)

Description w = barthannwin(L) returns an L-point modified Bartlett-Hann
window in the column vector w. Like Bartlett, Hann, and Hamming
windows, this window has a mainlobe at the origin and asymptotically
decaying sidelobes on both sides. It is a linear combination of weighted
Bartlett and Hann windows with near sidelobes lower than both
Bartlett and Hann and with far sidelobes lower than both Bartlett and
Hamming windows. The mainlobe width of the modified Bartlett-Hann
window is not increased relative to either Bartlett or Hann window
mainlobes.

Note The Hann window is also called the Hanning window.

Examples Create a 64-point Bartlett-Hann window and display the result using
WVTool:

L=64;
wvtool(barthannwin(L))
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Algorithms The equation for computing the coefficients of a Modified
Bartlett-Hanning window is

w n
n
N

n
N

( ) = − −⎛
⎝⎜

⎞
⎠⎟
+ −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟0 62 0 48 0 5 0 38 2 0 5. . . . cos .π

where 0 ≤ ≤n N and the window length is L N= +1 .

References [1] Ha, Y.H., and J.A. Pearce. “A New Window and Comparison to
Standard Windows.” IEEE® Transactions on Acoustics, Speech, and
Signal Processing. Vol. 37, No. 2, (February 1999). pp. 298-301.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, p. 468.

See Also bartlett | blackmanharris | bohmanwin | nuttallwin | parzenwin |
rectwin | triang | window | wintool | wvtool
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Purpose Bartlett window

Syntax w = bartlett(L)

Description w = bartlett(L) returns an L-point Bartlett window in the column
vector w, where L must be a positive integer. The coefficients of a
Bartlett window are computed as follows:

w n

n
N

n
N

n
N

N
n N

( ) =
≤ ≤

− ≤ ≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

2
0

2

2
2

2

,

,

The window length L N= +1 .

The Bartlett window is very similar to a triangular window as returned
by the triang function. The Bartlett window always ends with zeros
at samples 1 and n, however, while the triangular window is nonzero
at those points. For L odd, the center L-2 points of bartlett(L) are
equivalent to triang(L-2).

Note If you specify a one-point window (set L=1), the value 1 is returned.

Examples Create a 64-point Bartlett window and display the result using WVTool:

L=64;
wvtool(bartlett(L))
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References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

See Also barthannwin | blackmanharris | bohmanwin | nuttallwin |
parzenwin | rectwin | triang | window | wintool | wvtool
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besselap

Purpose Bessel analog lowpass filter prototype

Syntax [z,p,k] = besselap(n)

Description [z,p,k] = besselap(n) returns the poles and gain of an order n
Bessel analog lowpass filter prototype. n must be less than or equal to
25. The function returns the poles in the length n column vector p and
the gain in scalar k. z is an empty matrix because there are no zeros.
The transfer function is

H s
k

s p s p s p n
( )

( ) ( ) ( )
=

−( ) −( ) −( )1 2 

besselap normalizes the poles and gain so that at low frequency and
high frequency the Bessel prototype is asymptotically equivalent to the
Butterworth prototype of the same order [1]. The magnitude of the filter

is less than 1 2/ at the unity cutoff frequency Ωc = 1.

Analog Bessel filters are characterized by a group delay that is
maximally flat at zero frequency and almost constant throughout the
passband. The group delay at zero frequency is

2

2

1
n

nn

n( )⎛

⎝
⎜

⎞

⎠
⎟

!

!

/

Algorithms besselap finds the filter roots from a lookup table constructed using
Symbolic Math Toolbox™ software.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 228-230.

See Also besself | buttap | cheb1ap | cheb2ap | ellipap
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besself

Purpose Bessel analog filter design

Syntax [b,a] = besself(n,Wo)
[z,p,k] = besself(...)
[A,B,C,D] = besself(...)

Description besself designs lowpass, analog Bessel filters, which are characterized
by almost constant group delay across the entire passband, thus
preserving the wave shape of filtered signals in the passband. besself
does not support the design of digital Bessel filters.

[b,a] = besself(n,Wo) designs an order n lowpass analog Bessel
filter, where Wo is the frequency up to which the filter’s group delay is
approximately constant. Larger values of the filter order (n) produce a
group delay that better approximates a constant up to frequency Wo.

besself returns the filter coefficients in the length n+1 row vectors b
and a, with coefficients in descending powers of s, derived from this
transfer function:

H s
B s
A s

b s b s b n

s a s a n

n n

n n
( )

( )
( )

( ) ( ) ( )

( ) ( )
= = + +…+ +

+ +…+ +

−

−
1 2 1

2 1

1

1

[z,p,k] = besself(...) returns the zeros and poles in length n or 2*n
column vectors z and p and the gain in the scalar k.

[A,B,C,D] = besself(...) returns the filter design in state-space
form, where A, B, C, and D are

x Ax Bu
y Cx Du
= +
= +

and u is the input, x is the state vector, and y is the output.

Examples Design a fifth-order analog lowpass Bessel filter with an approximate
constant group delay up to 10,000 rad/s and plot the frequency response
of the filter using freqs:
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[b,a] = besself(5,10000);
freqs(b,a) % Plot frequency response

Limitations Lowpass Bessel filters have a monotonically decreasing magnitude
response, as do lowpass Butterworth filters. Compared to the
Butterworth, Chebyshev, and elliptic filters, the Bessel filter has the
slowest rolloff and requires the highest order to meet an attenuation
specification.

For high order filters, the state-space form is the most numerically
accurate, followed by the zero-pole-gain form. The transfer function
coefficient form is the least accurate; numerical problems can arise for
filter orders as low as 15.

Algorithms besself performs a four-step algorithm:

1 It finds lowpass analog prototype poles, zeros, and gain using the
besselap function.

2 It converts the poles, zeros, and gain into state-space form.
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3 It transforms the lowpass prototype into a lowpass filter that meets
the design specifications.

4 It converts the state-space filter back to transfer function or
zero-pole-gain form, as required.

See Also besselap | butter | cheby1 | cheby2 | ellip
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Purpose Bilinear transformation method for analog-to-digital filter conversion

Syntax [zd,pd,kd] = bilinear(z,p,k,fs)
[zd,pd,kd] = bilinear(z,p,k,fs,fp)
[numd,dend] = bilinear(num,den,fs)
[numd,dend] = bilinear(num,den,fs,fp)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs,fp)

Description The bilinear transformation is a mathematical mapping of variables.
In digital filtering, it is a standard method of mapping the s or analog
plane into the z or digital plane. It transforms analog filters, designed
using classical filter design techniques, into their discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by

H z H s s f
z
zz

( ) ( )= = −
+

2
1
1

This transformation maps the jΩ axis (from Ω = –∞ to +∞) repeatedly
around the unit circle (ejw, from ω = –π to π) by

ω = ⎛

⎝
⎜

⎞

⎠
⎟

−2
2

1tan
Ω
fs

bilinear can accept an optional parameter Fp that specifies
prewarping. fp, in hertz, indicates a “match” frequency, that is, a
frequency for which the frequency responses before and after mapping
match exactly. In prewarped mode, the bilinear transformation maps
the s-plane into the z-plane with
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With the prewarping option, bilinear maps the jΩ axis (from Ω = –∞ to
+∞) repeatedly around the unit circle (ejw, from ω = –π to π) by
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In prewarped mode, bilinear matches the frequency 2πfp (in radians
per second) in the s-plane to the normalized frequency 2πfp/fs (in radians
per second) in the z-plane.

The bilinear function works with three different linear system
representations: zero-pole-gain, transfer function, and state-space form.

Zero-Pole-Gain

[zd,pd,kd] = bilinear(z,p,k,fs) and

[zd,pd,kd] = bilinear(z,p,k,fs,fp) convert the s-domain transfer
function specified by z, p, and k to a discrete equivalent. Inputs z
and p are column vectors containing the zeros and poles, k is a scalar
gain, and fs is the sampling frequency in hertz. bilinear returns the
discrete equivalent in column vectors zd and pd and scalar kd. The
optional match frequency, fp is in hertz and is used for prewarping.

Transfer Function

[numd,dend] = bilinear(num,den,fs) and

[numd,dend] = bilinear(num,den,fs,fp) convert an s-domain
transfer function given by num and den to a discrete equivalent. Row
vectors num and den specify the coefficients of the numerator and
denominator, respectively, in descending powers of s. Let B(s) be the
numerator polynomial and A(s) be the denominator polynomial. The
transfer function is:

B s
A s

B s B n s B n

A s A m s A m

n

m
( )
( )

( ) ( ) ( )

( ) ( ) ( )
= + + + +

+ + + +
1 1

1 1





fs is the sampling frequency in hertz. bilinear returns the discrete
equivalent in row vectors numd and dend in descending powers of z
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(ascending powers of z–1). fp is the optional match frequency, in hertz,
for prewarping.

State-Space

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs) and

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs,fp) convert the
continuous-time state-space system in matrices A, B, C, D

x Ax Bu
y Cx Du
= +
= +

to the discrete-time system:

x n A x n B u n

y n C x n D u n
d d

d d

[ ] [ ] [ ]

[ ] [ ] [ ]

+ = +
= +

1

      

fs is the sampling frequency in hertz. bilinear returns the discrete
equivalent in matrices Ad, Bd, Cd, Dd. The optional match frequency, fp
is in hertz and is used for prewarping.

Algorithms bilinear uses one of two algorithms depending on the format of
the input linear system you supply. One algorithm works on the
zero-pole-gain format and the other on the state-space format. For
transfer function representations, bilinear converts to state-space
form, performs the transformation, and converts the resulting
state-space system back to transfer function form.

Zero-Pole-Gain Algorithm

For a system in zero-pole-gain form, bilinear performs four steps:

1 If fp is present, it prewarps:

fp = 2*pi*fp;
fs = fp/tan(fp/fs/2)

otherwise, fs = 2*fs.
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2 It strips any zeros at ±∞ using

z = z(finite(z));

3 It transforms the zeros, poles, and gain using

pd = (1+p/fs)./(1-p/fs); % Do bilinear transformation
zd = (1+z/fs)./(1-z/fs);
kd = real(k*prod(fs-z)./prod(fs-p));

4 It adds extra zeros at -1 so the resulting system has equivalent
numerator and denominator order.

State-Space Algorithm

For a system in state-space form, bilinear performs two steps:

1 If fp is present, let





=

f

f f
p

p stan( / )

If fp is not present, let λ=fs.

2 Compute Ad, Bd, Cd, and Dd in terms of A, B, C, and D using
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Diagnostics bilinear requires that the numerator order be no greater than the
denominator order. If this is not the case, bilinear displays

Numerator cannot be higher order than denominator.
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For bilinear to distinguish between the zero-pole-gain and transfer
function linear system formats, the first two input parameters must
be vectors with the same orientation in these cases. If this is not the
case, bilinear displays

First two arguments must have the same orientation.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York:
John Wiley & Sons, 1987. Pgs. 209-213.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 450-454.

See Also impinvar | lp2bp | lp2bs | lp2hp | lp2lp
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Purpose Permute data into bit-reversed order

Syntax y = bitrevorder(x)
[y,i] = bitrevorder(x)

Description bitrevorder is useful for pre-arranging filter coefficients so that
bit-reversed ordering does not have to be performed as part of an
fft or inverse FFT (ifft) computation. This can improve run-time
efficiency for external applications or for Simulink® blockset models.
Both MATLAB fft and ifft functions process linear input and output.

Note Using bitrevorder is equivalent to using digitrevorder with
radix base 2.

y = bitrevorder(x) returns the input data in bit-reversed order in
vector or matrix y. The length of x must be an integer power of 2. If x is
a matrix, the bit-reversal occurs on the first dimension of x with size
greater than 1. y is the same size as x.

[y,i] = bitrevorder(x) returns the bit-reversed vector or matrix
y and the bit-reversed indices i, such that y = x(i). Recall that
MATLAB matrices use 1-based indexing, so the first index of y will
be 1, not 0.

The following table shows the numbers 0 through 7, the corresponding
bits and the bit-reversed numbers.

Linear Index Bits Bit- Reversed Bit-Reversed Index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1
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Linear Index Bits Bit- Reversed Bit-Reversed Index

5 101 101 5

6 110 011 3

7 111 111 7

Examples Obtain the bit-reversed ordered output of a vector:

x=[0:7]'; % Create a column vector
[x,bitrevorder(x)]
% ans =
% 0 0
% 1 4
% 2 2
% 3 6
% 4 1
% 5 5
% 6 3
% 7 7

See Also fft | digitrevorder | ifft
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Purpose Blackman window

Syntax w = blackman(N)
w = blackman(N,SFLAG)

Description w = blackman(N) returns the N-point symmetric Blackman window in
the column vector w, where N is a positive integer.

w = blackman(N,SFLAG) returns an N-point Blackman window using
the window sampling specified by 'sflag', which can be either
'periodic' or 'symmetric' (the default). The 'periodic' flag
is useful for DFT/FFT purposes, such as in spectral analysis. The
DFT/FFT contains an implicit periodic extension and the periodic flag
enables a signal windowed with a periodic window to have perfect
periodic extension. When 'periodic' is specified, blackman computes a
length N+1 window and returns the first N points. When using windows
for filter design, the 'symmetric' flag should be used.

See “Definitions” on page 1-37 for a description of the difference between
the symmetric and periodic windows.

Note If you specify a one-point window (set N=1), the value 1 is returned.

Examples Create a 64-point Blackman window and display the result using
WVTool:

L=64;
wvtool(blackman(L))
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Definitions The following equation defines the Blackman window of length N:

w n n N n N n M( ) . . cos( / ( )) . cos( / ( ))= − − + − ≤ ≤ −0 42 0 5 2 1 0 08 4 1 0 1 

where M is N/2 for N even and (N+1)/2 for N odd.

In the symmetric case, the second half of the Blackman window M
≤ n ≤ N-1 is obtained by flipping the first half around the midpoint.
The symmetric option is the preferred method when using a Blackman
window in FIR filter design.

The periodic Blackman window is constructed by extending the
desired window length by one sample to N+1, constructing a symmetric
window, and removing the last sample. The periodic version is the
preferred method when using a Blackman window in spectral analysis
because the discrete Fourier transform assumes periodic extension of
the input vector.

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.
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See Also flattopwin | hamming | hann | window | wintool | wvtool
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Purpose Minimum 4-term Blackman-Harris window

Syntax w = blackmanharris(N)
w = blackmanharris(N,SFLAG)

Description w = blackmanharris(N) returns an N-point symmetric 4-term
Blackman-Harris window in the column vector w. The window is
minimum in the sense that its maximum sidelobes are minimized.

w = blackmanharris(N,SFLAG) uses SFLAG window sampling. SFLAG
can be 'symmetric' or 'periodic'. The default is 'symmetric'. You
can find the equations defining the symmetric and periodic windows in
“Definitions” on page 1-40.

Examples Create a 32-point symmetric Blackman-Harris window and display
the result using WVTool:

N = 32;
wvtool(blackmanharris(N))

1-39



blackmanharris

Definitions The equation for the symmetric 4-term Blackman-harris window of
length N is

w n a a a a n Nn
N

n
N

n
N

( ) cos( ) cos( ) cos( )        0 1
2

1 2
4

1 3
6

1
0 1  

The equation for the periodic 4-term Blackman-harris window of
length N is

w n a a a a n Nn
N

n
N

n
N

( ) cos( ) cos( ) cos( )      0 1
2

2
4

3
6 0 1  

The periodic window is N-periodic.

The following table lists the coefficients:

Coefficient Value

a0 0.35875

a1 0.48829

a2 0.14128

a3 0.01168

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66
(January 1978). pp. 51-84.

See Also barthannwin | bartlett | bohmanwin | nuttallwin | parzenwin |
rectwin | triang | window | wintool | wvtool
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Purpose Bohman window

Syntax w = bohmanwin(L)

Description w = bohmanwin(L) returns an L-point Bohman window in column
vector w. A Bohman window is the convolution of two half-duration
cosine lobes. In the time domain, it is the product of a triangular
window and a single cycle of a cosine with a term added to set the first
derivative to zero at the boundary. Bohman windows fall off as 1/w4.

Examples Compute a 64-point Bohman window and display the result using
WVTool:

L=64;
wvtool(bohmanwin(L))
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Algorithms The equation for computing the coefficients of a Bohman window is

w x x x x x( ) ( | |)cos( | |) sin( | |)= − + − ≤ ≤1
1

1 1




where x is a length L vector of linearly spaced values generated using
linspace. The first and last elements of the Bohman window are forced
to be identically zero.

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66
(January 1978). p. 67.

See Also barthannwin | bartlett | blackmanharris | nuttallwin | parzenwin
| rectwin | triang | window | wintool | wvtool
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Purpose Buffer signal vector into matrix of data frames

Syntax y = buffer(x,n)
y = buffer(x,n,p)
y = buffer(x,n,p,opt)
[y,z] = buffer(...)
[y,z,opt] = buffer(...)

Description y = buffer(x,n) partitions a length-L signal vector x into
nonoverlapping data segments (frames) of length n. Each data
frame occupies one column of matrix output y, which has n rows and
ceil(L/n) columns. If L is not evenly divisible by n, the last column
is zero-padded to length n.

y = buffer(x,n,p) overlaps or underlaps successive frames in the
output matrix by p samples:

• For 0 < p < n (overlap), buffer repeats the final p samples of each
frame at the beginning of the following frame. For example, if
x = 1:30 and n = 7, an overlap of p = 3 looks like this.

The first frame starts with p zeros (the default initial condition), and
the number of columns in y is ceil(L/(n-p)).

• For p < 0 (underlap), buffer skips p samples between consecutive
frames. For example, if x = 1:30 and n = 7, a buffer with underlap
of p = -3 looks like this.

1-43



buffer

The number of columns in y is ceil(L/(n-p)).

y = buffer(x,n,p,opt) specifies a vector of samples to precede x(1)
in an overlapping buffer, or the number of initial samples to skip in an
underlapping buffer:

• For 0 < p < n (overlap), opt specifies a length-p vector to insert
before x(1) in the buffer. This vector can be considered an initial
condition, which is needed when the current buffering operation is
one in a sequence of consecutive buffering operations. To maintain
the desired frame overlap from one buffer to the next, opt should
contain the final p samples of the previous buffer in the sequence.
See “Continuous Buffering” on page 1-47 below.

By default, opt is zeros(p,1) for an overlapping buffer. Set opt to
'nodelay' to skip the initial condition and begin filling the buffer
immediately with x(1). In this case, L must be length(p) or longer.
For example, if x = 1:30 and n = 7, a buffer with overlap of p = 3
looks like this.

• For p < 0 (underlap), opt is an integer value in the range [0,-p]
specifying the number of initial input samples, x(1:opt), to skip
before adding samples to the buffer. The first value in the buffer
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is therefore x(opt+1). By default, opt is zero for an underlapping
buffer.

This option is especially useful when the current buffering operation
is one in a sequence of consecutive buffering operations. To maintain
the desired frame underlap from one buffer to the next, opt should
equal the difference between the total number of points to skip
between frames (p) and the number of points that were available to
be skipped in the previous input to buffer. If the previous input had
fewer than p points that could be skipped after filling the final frame
of that buffer, the remaining opt points need to be removed from the
first frame of the current buffer. See “Continuous Buffering” on page
1-47 for an example of how this works in practice.

[y,z] = buffer(...) partitions the length-L signal vector x into
frames of length n, and outputs only the full frames in y. If y is an
overlapping buffer, it has n rows and m columns, where

m = floor(L/(n-p)) % When length(opt) = p

or

m = floor((L-n)/(n-p))+1 % When opt = 'nodelay'

If y is an underlapping buffer, it has n rows and m columns, where

m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-p)) >= n)

If the number of samples in the input vector (after the appropriate
overlapping or underlapping operations) exceeds the number of places
available in the n-by-m buffer, the remaining samples in x are output in
vector z, which for an overlapping buffer has length

length(z) = L - m*(n-p) % When length(opt) = p

or

length(z) = L - ((m-1)*(n-p)+n) % When opt = 'nodelay'
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and for an underlapping buffer has length

length(z) = (L-opt) - m*(n-p)

Output z shares the same orientation (row or column) as x. If there are
no remaining samples in the input after the buffer with the specified
overlap or underlap is filled, z is an empty vector.

[y,z,opt] = buffer(...) returns the last p samples of a overlapping
buffer in output opt. In an underlapping buffer, opt is the difference
between the total number of points to skip between frames (-p) and the
number of points in x that were available to be skipped after filling
the last frame:

• For 0 < p < n (overlap), opt (as an output) contains the final p
samples in the last frame of the buffer. This vector can be used
as the initial condition for a subsequent buffering operation in a
sequence of consecutive buffering operations. This allows the desired
frame overlap to be maintained from one buffer to the next. See
“Continuous Buffering” on page 1-47 below.

• For p < 0 (underlap), opt (as an output) is the difference between the
total number of points to skip between frames (-p) and the number
of points in x that were available to be skipped after filling the last
frame.

opt = m*(n-p) + opt - L % z is the empty vector.

where opt on the right-hand side is the input argument to buffer,
and opt on the left-hand side is the output argument. Here m is the
number of columns in the buffer, which is

m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-p))>=n)

Note that for an underlapping buffer output opt is always zero when
output z contains data.

The opt output for an underlapping buffer is especially useful when
the current buffering operation is one in a sequence of consecutive
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buffering operations. The opt output from each buffering operation
specifies the number of samples that need to be skipped at the
start of the next buffering operation to maintain the desired frame
underlap from one buffer to the next. If fewer than p points were
available to be skipped after filling the final frame of the current
buffer, the remaining opt points need to be removed from the first
frame of the next buffer.

In a sequence of buffering operations, the opt output from each
operation should be used as the opt input to the subsequent buffering
operation. This ensures that the desired frame overlap or underlap is
maintained from buffer to buffer, as well as from frame to frame within
the same buffer. See “Continuous Buffering” on page 1-47 below for an
example of how this works in practice.

Continuous Buffering

In a continuous buffering operation, the vector input to the buffer
function represents one frame in a sequence of frames that make up a
discrete signal. These signal frames can originate in a frame-based data
acquisition process, or within a frame-based algorithm like the FFT.

As an example, you might acquire data from an A/D card in frames of 64
samples. In the simplest case, you could rebuffer the data into frames
of 16 samples; buffer with n = 16 creates a buffer of four frames from
each 64-element input frame. The result is that the signal of frame size
64 has been converted to a signal of frame size 16; no samples were
added or removed.

In the general case where the original signal frame size, L, is not
equally divisible by the new frame size, n, the overflow from the last
frame needs to be captured and recycled into the following buffer.
You can do this by iteratively calling buffer on input x with the
two-output-argument syntax:

[y,z] = buffer([z;x],n) % x is a column vector.
[y,z] = buffer([z,x],n) % x is a row vector.

This simply captures any buffer overflow in z, and prepends the data to
the subsequent input in the next call to buffer. Again, the input signal,
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x, of frame size L, has been converted to a signal of frame size n without
any insertion or deletion of samples.

Note that continuous buffering cannot be done with the single-output
syntax y = buffer(...), because the last frame of y in this case is zero
padded, which adds new samples to the signal.

Continuous buffering in the presence of overlap and underlap is
handled with the opt parameter, which is used as both an input and
output to buffer. The following two examples demonstrate how the opt
parameter should be used.

Examples Example 1: Continuous Overlapping Buffers

First create a buffer containing 100 frames, each with 11 samples:

data = buffer(1:1100,11); % 11 samples per frame

Imagine that the frames (columns) in the matrix called data are the
sequential outputs of a data acquisition board sampling a physical
signal: data(:,1) is the first D/A output, containing the first 11 signal
samples; data(:,2) is the second output, containing the next 11 signal
samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to
a frame size of 4 with an overlap of 1. To do this, you will repeatedly
call buffer to operate on each successive input frame, using the opt
parameter to maintain consistency in the overlap from one buffer to
the next.

Set the buffer parameters:

n = 4; % New frame size
p = 1; % Overlap
opt = -5; % Value of y(1)
z = []; % Initialize the carry-over vector.

Now repeatedly call buffer, each time passing in a new signal frame
from data. Note that overflow samples (returned in z) are carried over
and prepended to the input in the subsequent call to buffer:
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for i=1:size(data,2), % Loop over each source
% frame (column)

x = data(:,i); % Single frame of D/A output
[y,z,opt] = buffer([z;x],n,p,opt);
disp(y); % Display the buffer of data.
pause

end

Here’s what happens during the first four iterations.

Note that the size of the output matrix, y, can vary by a single column
from one iteration to the next. This is typical for buffering operations
with overlap or underlap.
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Example 2: Continuous Underlapping Buffers

Again create a buffer containing 100 frames, each with 11 samples:

data = buffer(1:1100,11); % 11 samples per frame

Again, imagine that data(:,1) is the first D/A output, containing the
first 11 signal samples; data(:,2) is the second output, containing the
next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a
frame size of 4 with an underlap of 2. To do this, you will repeatedly
call buffer to operate on each successive input frame, using the opt
parameter to maintain consistency in the underlap from one buffer
to the next.

Set the buffer parameters:

n = 4; % New frame size
p = -2; % Underlap
opt = 1; % Skip the first input element, x(1).
z = []; % Initialize the carry-over vector.

Now repeatedly call buffer, each time passing in a new signal frame
from data. Note that overflow samples (returned in z) are carried over
and prepended to the input in the subsequent call to buffer:

for i=1:size(data,2), % Loop over each source
% frame (column)

x = data(:,i); % Single frame of D/A output
[y,z,opt] = buffer([z;x],n,p,opt);
disp(y); % Display the buffer of data
pause

end

Here’s what happens during the first three iterations.
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Diagnostics Error messages are displayed when p ≥n or length(opt)≠length(p) in
an overlapping buffer case:

Frame overlap P must be less than the buffer size N.
Initial conditions must be specified as a length-P vector.

See Also reshape
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Purpose Butterworth filter prototype

Syntax [z,p,k] = buttap(n)

Description [z,p,k] = buttap(n) returns the poles and gain of an order n
Butterworth analog lowpass filter prototype. The function returns the
poles in the length n column vector p and the gain in scalar k. z is an
empty matrix because there are no zeros. The transfer function is

H s
z s
p s

k
s p s p s p n

( )
( )
( ) ( ) ( ) ( )

= =
−( ) −( ) −( )1 2 

Butterworth filters are characterized by a magnitude response that is
maximally flat in the passband and monotonic overall. In the lowpass
case, the first 2n-1 derivatives of the squared magnitude response are
zero at ω = 0. The squared magnitude response function is
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( / )

ω
ω ω
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1
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=
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corresponding to a transfer function with poles equally spaced around
a circle in the left half plane. The magnitude response at the cutoff

angular frequency ω0 is always 1 2/ regardless of the filter order.
buttap sets ω0 to 1 for a normalized result.

Algorithms z = [];
p = exp(sqrt(-1)*(pi*(1:2:2*n-1)/(2*n)+pi/2)).';
k = real(prod(-p));

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York:
John Wiley & Sons, 1987. Chapter 7.

See Also besselap | butter | cheb1ap | cheb2ap | ellipap
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Purpose Butterworth filter design

Syntax [z,p,k] = butter(n,Wn)
[z,p,k] = butter(n,Wn,'ftype')
[b,a] = butter(n,Wn)
[b,a] = butter(n,Wn,'ftype')
[A,B,C,D] = butter(n,Wn)
[A,B,C,D] = butter(n,Wn,'ftype')
[z,p,k] = butter(n,Wn,'s')
[z,p,k] = butter(n,Wn,'ftype','s')
[b,a] = butter(n,Wn,'s')
[b,a] = butter(n,Wn,'ftype','s')
[A,B,C,D] = butter(n,Wn,'s')
[A,B,C,D] = butter(n,Wn,'ftype','s')

Description butter designs lowpass, bandpass, highpass, and bandstop digital
and analog Butterworth filters. Butterworth filters are characterized
by a magnitude response that is maximally flat in the passband and
monotonic overall.

Butterworth filters sacrifice rolloff steepness for monotonicity in the
pass- and stopbands. Unless the smoothness of the Butterworth filter
is needed, an elliptic or Chebyshev filter can generally provide steeper
rolloff characteristics with a lower filter order.

Digital Domain

[z,p,k] = butter(n,Wn) designs an order n lowpass digital
Butterworth filter with normalized cutoff frequency Wn. It returns the
zeros and poles in length n column vectors z and p, and the gain in
the scalar k.

[z,p,k] = butter(n,Wn,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is one of the following:

• 'high' for a highpass digital filter with normalized cutoff frequency
Wn

• 'low' for a lowpass digital filter with normalized cutoff frequency Wn
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• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element
vector, Wn = [w1 w2]. The stopband is w1 < ω < w2.

Cutoff frequency is that frequency where the magnitude response of

the filter is 1 2/ . For butter, the normalized cutoff frequency Wn
must be a number between 0 and 1, where 1 corresponds to the Nyquist
frequency, π radians per sample.

If Wn is a two-element vector, Wn = [w1 w2], butter returns an order
2*n digital bandpass filter with passband w1 < ω < w2.

With different numbers of output arguments, butter directly obtains
other realizations of the filter. To obtain the transfer function form, use
two output arguments as shown below.

Note See “Limitations” on page 1-57 below for information about
numerical issues that affect forming the transfer function.

[b,a] = butter(n,Wn) designs an order n lowpass digital Butterworth
filter with normalized cutoff frequency Wn. It returns the filter
coefficients in length n+1 row vectors b and a, with coefficients in
descending powers of z.

H z
b b z b n z

a z a n z

n

n
( )

( ) ( ) ( )

( ) ( )
= + +…+ +

+ +…+ +

− −

− −
1 2 1

1 2 1

1

1

[b,a] = butter(n,Wn,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
as described above.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = butter(n,Wn) or

[A,B,C,D] = butter(n,Wn,'ftype') where A, B, C, and D are
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and u is the input, x is the state vector, and y is the output.

Analog Domain

[z,p,k] = butter(n,Wn,'s') designs an order n lowpass analog
Butterworth filter with angular cutoff frequency Wn rad/s. It returns the
zeros and poles in length n or 2*n column vectors z and p and the gain
in the scalar k. butter’s angular cutoff frequency Wn must be greater
than 0 rad/s.

If Wn is a two-element vector with w1 < w2, butter(n,Wn,’s’) returns an
order 2*n bandpass analog filter with passband w1 < ω < w2.

[z,p,k] = butter(n,Wn,'ftype','s') designs a highpass, lowpass, or
bandstop filter using the ftype values described above.

With different numbers of output arguments, butter directly obtains
other realizations of the analog filter. To obtain the transfer function
form, use two output arguments as shown below:

[b,a] = butter(n,Wn,'s') designs an order n lowpass analog
Butterworth filter with angular cutoff frequency Wn rad/s. It returns the
filter coefficients in the length n+1 row vectors b and a, in descending
powers of s, derived from this transfer function:

H s
B s
A s

b s b s b n

s a s a n

n n

n n
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1
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[b,a] = butter(n,Wn,'ftype','s') designs a highpass, lowpass, or
bandstop filter using the ftype values described above.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = butter(n,Wn,'s') or

[A,B,C,D] = butter(n,Wn,'ftype','s') where A, B, C, and D are
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and u is the input, x is the state vector, and y is the output.

Examples Highpass Filter

For data sampled at 1000 Hz, design a 9th-order highpass Butterworth
filter with cutoff frequency of 300 Hz, which corresponds to a normalized
value of 0.6:

[z,p,k] = butter(9,300/500,'high');
[sos,g] = zp2sos(z,p,k); % Convert to SOS form
Hd = dfilt.df2tsos(sos,g); % Create a dfilt object
h = fvtool(Hd); % Plot magnitude response
set(h,'Analysis','freq') % Display frequency response
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Limitations In general, you should use the [z,p,k] syntax to design IIR filters.
To analyze or implement your filter, you can then use the [z,p,k]
output with zp2sos and an sos dfilt structure. For higher order filters
(possibly starting as low as order 8), numerical problems due to roundoff
errors may occur when forming the transfer function using the [b,a]
syntax. The following example illustrates this limitation:

n = 6; Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,a] = butter(n,Wn,ftype);
h1=dfilt.df2(b,a); % This is an unstable filter.

% Zero-Pole-Gain design
[z, p, k] = butter(n,Wn,ftype);
[sos,g]=zp2sos(z,p,k);
h2=dfilt.df2sos(sos,g);

% Plot and compare the results
hfvt=fvtool(h1,h2,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')
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Algorithms butter uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using
the buttap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or
bandstop filter with desired cutoff frequencies, using a state-space
transformation.

4 For digital filter design, butter uses bilinear to convert the analog
filter into a digital filter through a bilinear transformation with
frequency prewarping. Careful frequency adjustment guarantees
that the analog filters and the digital filters will have the same
frequency response magnitude at Wn or w1 and w2.
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5 It converts the state-space filter back to transfer function or
zero-pole-gain form, as required.

See Also besself | buttap | buttord | cheby1 | cheby2 | ellip | maxflat
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Purpose Butterworth filter order and cutoff frequency

Syntax [n,Wn] = buttord(Wp,Ws,Rp,Rs)
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s')

Description buttord calculates the minimum order of a digital or analog
Butterworth filter required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs) returns the lowest order, n, of the
digital Butterworth filter with no more than Rp dB of passband ripple
and at least Rs dB of attenuation in the stopband. The scalar (or vector)
of corresponding cutoff frequencies, Wn, is also returned. Use the output
arguments n and Wn in butter.

Choose the input arguments to specify the stopband and passband
according to the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency,
is a scalar or a two-element vector with values
between 0 and 1, with 1 corresponding to the
normalized Nyquist frequency, π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a
two-element vector with values between 0 and 1, with
1 corresponding to the normalized Nyquist frequency.

Rp Passband ripple in decibels.

Rs Stopband attenuation in decibels. This value is the
number of decibels the stopband is down from the
passband.

Use the following guide to specify filters of different types.
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Filter Type Stopband and Passband Specifications

Filter Type
Stopband and Passband
Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws
contains the one specified by
Wp (Ws(1) < Wp(1) < Wp(2) <
Ws(2)).

(0,Ws(1)) and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp
contains the one specified by
Ws (Wp(1) < Ws(1) < Ws(2) <
Wp(2)).

(Ws(1),Ws(2)) (0,Wp(1))
and
(Wp(2),1)

If your filter specifications call for a bandpass or bandstop filter with
unequal ripple in each of the passbands or stopbands, design separate
lowpass and highpass filters according to the specifications in this table,
and cascade the two filters together.

Analog Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and
cutoff frequencies Wn for an analog Butterworth filter. You specify the
frequencies Wp and Ws similar those described in the Description of
Stopband and Passband Filter Parameters on page 1-60 table above,
only in this case you specify the frequency in radians per second, and
the passband or the stopband can be infinite.

Use buttord for lowpass, highpass, bandpass, and bandstop filters as
described in the Filter Type Stopband and Passband Specifications
on page 1-61 table above.
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Examples Example 1

For data sampled at 1000 Hz, design a lowpass filter with no more than
3 dB of ripple in the passband from 0 to 40 Hz, and at least 60 dB of
attenuation in the stopband. Plot the filter’s frequency response.

Wp = 40/500; Ws = 150/500;
[n,Wn] = buttord(Wp,Ws,3,60);
% Returns n = 5; Wn=0.0810;
[b,a] = butter(n,Wn);
freqz(b,a,512,1000);
title('n=5 Butterworth Lowpass Filter')

Example 2

Design a bandpass filter with a passband from 60 to 200 Hz with at
most 3 dB of passband ripple and at least 40 dB attenuation in the
stopbands that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = buttord(Wp,Ws,Rp,Rs);
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% Returns n =16; Wn =[0.1198 0.4005];
[b,a] = butter(n,Wn);
freqz(b,a,128,1000)
title('n=16 Butterworth Bandpass Filter')

Algorithms buttord’s order prediction formula is described in [1]. It operates in the
analog domain for both analog and digital cases. For the digital case, it
converts the frequency parameters to the s-domain before estimating the
order and natural frequency, and then converts back to the z-domain.

buttord initially develops a lowpass filter prototype by transforming
the passband frequencies of the desired filter to 1 rad/s (for lowpass
and highpass filters) and to -1 and 1 rad/s (for bandpass and bandstop
filters). It then computes the minimum order required for a lowpass
filter to meet the stopband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 227.

See Also butter | cheb1ord | cheb2ord | ellipord | kaiserord
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Purpose Complex cepstral analysis

Syntax xhat = cceps(x)
[xhat,nd] = cceps(x)
[xhat,nd,xhat1] = cceps(x)
[...] = cceps(x,n)

Description Cepstral analysis is a nonlinear signal processing technique that is
applied most commonly in speech processing and homomorphic filtering
[1].

Note cceps only works on real data.

xhat = cceps(x) returns the complex cepstrum of the real data
sequence x using the Fourier transform. The input is altered, by the
application of a linear phase term, to have no phase discontinuity at ±π
radians. That is, it is circularly shifted (after zero padding) by some
samples, if necessary, to have zero phase at π radians.

[xhat,nd] = cceps(x) returns the number of samples nd of (circular)
delay added to x prior to finding the complex cepstrum.

[xhat,nd,xhat1] = cceps(x) returns a second complex cepstrum
xhat1 computed using an alternative factorization algorithm[1][2]. This
method can be applied only to finite duration signals. See the Algorithm
section below for a comparison of the Fourier and factorization methods
of computing the complex cepstrum.

[...] = cceps(x,n) zero pads x to length n and returns the length
n complex cepstrum of x.

Algorithms cceps is an implementation of algorithm 7.1 in [3]. A lengthy Fortran
program reduces to these three lines of MATLAB code, which compose
the core of cceps:

h = fft(x);
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logh = log(abs(h)) + sqrt(-1)*rcunwrap(angle(h));
y = real(ifft(logh));

Note rcunwrap in the above code segment is a special version of unwrap
that subtracts a straight line from the phase. rcunwrap is a local
function within cceps and is not available for use from the MATLAB
command line.

The following table lists the pros and cons of the Fourier and
factorization algorithms.

Algorithm Pros Cons

Fourier Can be used for any
signal.

Requires phase
unwrapping. Output
is aliased.

Factorization Does not require
phase unwrapping.
No aliasing

Can be used only for
short duration signals.
Input signal must have an
all-zero Z-transform with
no zeros on the unit circle.

In general, you cannot use the results of these two algorithms to verify
each other. You can use them to verify each other only when the first
element of the input data is positive, the Z-transform of the data
sequence has only zeros, all of these zeros are inside the unit circle, and
the input data sequence is long (or padded with zeros).

Examples The following example uses cceps to show an echo.

Fs = 100;
t = 0:1/Fs:1.27;

% 45Hz sine sampled at 100Hz
s1 = sin(2*pi*45*t);
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% Add an echo with half the amplitude and 0.2 second later
s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

c = cceps(s2);
plot(t,c)

Notice the echo at 0.2 second.

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 788-789.
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[2] Steiglitz, K., and B. Dickinson. “Computation of the complex
cepstrum by factorization of the Z-transform” in Proc. Int. Conf. ASSP.
1977, pp. 723–726.

[3] IEEE Programs for Digital Signal Processing. IEEE Press. New
York: John Wiley & Sons, 1979.

See Also icceps | hilbert | rceps | unwrap
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Purpose Modulo-N circular convolution

Syntax c = cconv(a,b,n)
c = cconv(gpuArrayA,gpuArrayB,n)

Description Circular convolution is used to convolve two discrete Fourier transform
(DFT) sequences. For very long sequences, circular convolution may
be faster than linear convolution.

c = cconv(a,b,n) circularly convolves vectors a and b. n is
the length of the resulting vector. If you omit n, it defaults to
length(a)+length(B)-1. When n = length(a)+length(B)-1,
the circular convolution is equivalent to the linear convolution
computed with conv. You can also use cconv to compute the circular
cross-correlation of two sequences (see the example below).

c = cconv(gpuArrayA,gpuArrayB,n) returns the circular convolution
of the input vectors of class gpuArray. See “Use gpuArray Data”
for details on gpuArray objects. Using cconv with gpuArray
objects requires Parallel Computing Toolbox™ software and a
CUDA-enabled NVIDIA GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details. The output vector, c, is a gpuArray object. See “Circular
Convolution using the GPU” on page 1-69 for an example of using the
GPU to compute the circular convolution.

Examples The following example calculates a modulo-4 circular convolution.

a = [2 1 2 1];
b = [1 2 3 4];
c = cconv(a,b,4)
% Returns
% c =
% 14 16 14 16

The following example compares a circular correlation, where n uses the
default value, and a linear convolution. The resulting norm is a value
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that is virtually zero, which shows that the two convolutions produce
virtually the same result.

a = [1 2 -1 1];
b = [1 1 2 1 2 2 1 1];
c = cconv(a,b) % Circular convolution
cref = conv(a,b) % Linear convolution
norm(c-cref)

The following example uses cconv to compute the circular
cross-correlation of two sequences. The result is compared to the
cross-correlation computed using xcorr.

a = [1 2 2 1]+1i;
b = [1 3 4 1]-2*1i;
c = cconv(a,conj(fliplr(b)),7); % Compute using cconv
cref = xcorr(a,b); % Compute using xcorr
norm(c-cref)

Circular Convolution using the GPU

The following example requires Parallel Computing
Toolbox software and a CUDA-enabled NVIDIA
GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details.

Create two signals consisting of a 1 kHz sine wave in additive white
Gaussian noise. The sampling rate is 10 kHz

Fs = 1e4;
t = 0:1/Fs:10-(1/Fs);
x = cos(2*pi*1e3*t)+randn(size(t));
y = sin(2*pi*1e3*t)+randn(size(t));

Put x and y on the GPU using gpuArray. Obtain the circular convolution
using the GPU.
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x = gpuArray(x);
y = gpuArray(y);
cirC = cconv(x,y,length(x)+length(y)-1);

Compare the result to the linear convolution of x and y.

linC = conv(x,y);
norm(linC-cirC,2)

Return the circular convolution, cirC, to the MATLAB workspace using
gather.

cirC = gather(cirC);

References [1] Orfanidis, S.J., Introduction to Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1996. pp. 524–529.

See Also conv
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Purpose Convert second-order sections cell array to matrix

Syntax m = cell2sos(c)

Description m = cell2sos(c) changes a 1-by-L cell array c consisting of 1-by-2
cell arrays into an L-by-6 second-order section matrix m. Matrix m
takes the same form as the matrix generated by tf2sos. You can use
m = cell2sos(c) to invert the results of c = sos2cell(m).

c must be a cell array of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

where both bi and ai are row vectors of at most length 3, and
i = 1, 2, ..., L. The resulting matrix m is given by

m = [b1 a1;b2 a2; ... ;bL aL]

See Also sos2cell | tf2sos
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Purpose Complex and nonlinear-phase equiripple FIR filter design

Syntax b = cfirpm(n,f,@fresp)
b = cfirpm(n,f,@fresp,w)
b = cfirpm(n,f,a)
b = cfirpm(n,f,a,w)
b = cfirpm(...,'sym')
b = cfirpm(...,'skip_stage2')
b = cfirpm(..., 'debug')
b = cfirpm(...,{lgrid})
[b,delta] = cfirpm(...)
[b,delta,opt] = cfirpm(...)

Description cfirpm allows arbitrary frequency-domain constraints to be specified for
the design of a possibly complex FIR filter. The Chebyshev (or minimax)
filter error is optimized, producing equiripple FIR filter designs.

b = cfirpm(n,f,@fresp) returns a length n+1 FIR filter with the best
approximation to the desired frequency response as returned by function
fresp, which is called by its function handle (@fresp). f is a vector of
frequency band edge pairs, specified in the range -1 and 1, where 1
corresponds to the normalized Nyquist frequency. The frequencies must
be in increasing order, and f must have even length. The frequency
bands span f(k) to f(k+1) for k odd; the intervals f(k+1) to f(k+2) for
k odd are “transition bands” or “don’t care” regions during optimization.

Predefined fresp frequency response functions are included for a
number of common filter designs, as described below. For all of the
predefined frequency response functions, the symmetry option 'sym'
defaults to 'even' if no negative frequencies are contained in f and
d = 0; otherwise 'sym' defaults to 'none'. (See the 'sym' option below
for details.) For all of the predefined frequency response functions, d
specifies a group-delay offset such that the filter response has a group
delay of n/2+d in units of the sample interval. Negative values create
less delay; positive values create more delay. By default d = 0:

• @lowpass, @highpass, @allpass, @bandpass, @bandstop
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These functions share a common syntax, exemplified below by the
string 'lowpass'.

b = cfirpm(n,f,@lowpass,...) and

b = cfirpm(n,f,{@lowpass,d},...) design a linear-phase
(n/2+d delay) filter.

Note For @bandpass filters, the first element in the frequency
vector must be less than or equal to zero and the last element must
be greater than or equal to zero.

• @multiband designs a linear-phase frequency response filter with
arbitrary band amplitudes.

b = cfirpm(n,f,{@multiband,a},...) and

b = cfirpm(n,f,{@multiband,a,d},...) specify vector a
containing the desired amplitudes at the band edges in f. The desired
amplitude at frequencies between pairs of points f(k) and f(k+1)
for k odd is the line segment connecting the points (f(k),a(k)) and
(f(k+1),a(k+1)).

• @differentiator designs a linear-phase differentiator. For these
designs, zero-frequency must be in a transition band, and band
weighting is set to be inversely proportional to frequency.

b = cfirpm(n,f,{@differentiator,fs},...) and

b = cfirpm(n,f,{@differentiator,fs,d},...) specify the
sample rate fs used to determine the slope of the differentiator
response. If omitted, fs defaults to 1.

• @hilbfilt designs a linear-phase Hilbert transform filter response.
For Hilbert designs, zero-frequency must be in a transition band.

b = cfirpm(n,f,@hilbfilt,...) and

b = cfirpm(N,F,{@hilbfilt,d},...) design a linear-phase
(n/2+d delay) Hilbert transform filter.
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• @invsinc designs a linear-phase inverse-sinc filter response.

b = cfirpm(n,f,{@invsinc,a},...) and

b = cfirpm(n,f,{@invsinc,a,d},...) specify gain a for
the sinc-function, computed as sinc(a*g), where g contains the
optimization grid frequencies normalized to the range [-1,1]. By
default, a=1. The group-delay offset is d, such that the filter response
will have a group delay of N/2 + d in units of the sample interval,
where N is the filter order. Negative values create less delay and
positive values create more delay. By default, d=0.

b = cfirpm(n,f,@fresp,w) uses the real, non-negative weights in
vector w to weight the fit in each frequency band. The length of w is half
the length of f, so there is exactly one weight per band.

b = cfirpm(n,f,a) is a synonym for
b = cfirpm(n,f,{@multiband,a}).

b = cfirpm(n,f,a,w) applies an optional set of positive weights, one per
band, for use during optimization. If w is not specified, the weights
are set to unity.

b = cfirpm(...,'sym') imposes a symmetry constraint on the impulse
response of the design, where 'sym' may be one of the following:

• 'none' indicates no symmetry constraint. This is the default if any
negative band edge frequencies are passed, or if fresp does not
supply a default.

• 'even' indicates a real and even impulse response. This is the
default for highpass, lowpass, allpass, bandpass, bandstop, invsinc,
and multiband designs.

• 'odd' indicates a real and odd impulse response. This is the default
for Hilbert and differentiator designs.

• 'real' indicates conjugate symmetry for the frequency response

If any 'sym' option other than 'none' is specified, the band edges
should be specified only over positive frequencies; the negative
frequency region is filled in from symmetry. If a 'sym' option is not
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specified, the fresp function is queried for a default setting. Any
user-supplied fresp function should return a valid 'sym' string when it
is passed the string 'defaults' as the filter order N.

b = cfirpm(...,'skip_stage2') disables the second-stage optimization
algorithm, which executes only when cfirpm determines that
an optimal solution has not been reached by the standard firpm
error-exchange. Disabling this algorithm may increase the speed of
computation, but may incur a reduction in accuracy. By default, the
second-stage optimization is enabled.

b = cfirpm(..., 'debug') enables the display of intermediate results
during the filter design, where 'debug' may be one of 'trace',
'plots', 'both', or 'off'. By default it is set to 'off'.

b = cfirpm(...,{lgrid}) uses the integer lgrid to control the density
of the frequency grid, which has roughly 2^nextpow2(lgrid*n)
frequency points. The default value for lgrid is 25. Note that the
{lgrid} argument must be a 1-by-1 cell array.

Any combination of the 'sym', 'skip_stage2', 'debug', and {lgrid}
options may be specified.

[b,delta] = cfirpm(...) returns the maximum ripple height delta.

[b,delta,opt] = cfirpm(...) returns a structure opt of optional
results computed by cfirpm and contains the following fields.

Field Description

opt.fgrid Frequency grid vector used for the filter design
optimization

opt.des Desired frequency response for each point in
opt.fgrid

opt.wt Weighting for each point in opt.fgrid

opt.H Actual frequency response for each point in opt.fgrid

opt.error Error at each point in opt.fgrid
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Field Description

opt.iextr Vector of indices into opt.fgrid for extremal
frequencies

opt.fextr Vector of extremal frequencies

User-definable functions may be used, instead of the predefined
frequency response functions for @fresp. The function is called from
within cfirpm using the following syntax

[dh,dw] = fresp(n,f,gf,w,p1,p2,...)

where:

• n is the filter order.

• f is the vector of frequency band edges that appear monotonically
between -1 and 1, where 1 corresponds to the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated
over each specified frequency band by cfirpm. gf determines the
frequency grid at which the response function must be evaluated.
This is the same data returned by cfirpm in the fgrid field of the
opt structure.

• w is a vector of real, positive weights, one per band, used during
optimization. w is optional in the call to cfirpm; if not specified, it is
set to unity weighting before being passed to fresp.

• dh and dw are the desired complex frequency response and band
weight vectors, respectively, evaluated at each frequency in grid gf.

• p1, p2, ..., are optional parameters that may be passed to fresp.

Additionally, a preliminary call is made to fresp to determine the
default symmetry property 'sym'. This call is made using the syntax:

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

1-76



cfirpm

The arguments may be used in determining an appropriate symmetry
default as necessary. The function private/lowpass.m may be useful
as a template for generating new frequency response functions.

Examples Example 1

Design a 31-tap, linear-phase, lowpass filter:

b = cfirpm(30,[-1 -0.5 -0.4 0.7 0.8 1],@lowpass);
fvtool(b,1)

Click the Magnitude and Phase Response button.

Example 2

Design a nonlinear-phase allpass FIR filter:

n = 22; % Filter order
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f = [-1 1]; % Frequency band edges
w = [1 1]; % Weights for optimization
gf = linspace(-1,1,256); % Grid of frequency points
d = exp(-1i*pi*gf*n/2 + 1i*pi*pi*sign(gf).*gf.*gf*(4/pi));

% Desired frequency response

Vector d now contains the complex frequency response that we desire
for the FIR filter computed by cfirpm.

Now compute the FIR filter that best approximates this response:

b = cfirpm(n,f,'allpass',w,'real'); % Approximation
freqz(b,1,256,'whole');
subplot(2,1,1); hold on % Overlay response
plot(pi*(gf+1),20*log10(abs(fftshift(d))),'r--')
subplot(2,1,2); hold on
plot(pi*(gf+1),unwrap(angle(fftshift(d)))*180/pi,'r--')
legend('Approximation','Desired')
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Algorithms An extended version of the Remez exchange method is implemented for
the complex case. This exchange method obtains the optimal filter when
the equiripple nature of the filter is restricted to have n+2 extremals.
When it does not converge, the algorithm switches to an ascent-descent
algorithm that takes over to finish the convergence to the optimal
solution. See the references for further details.

References [1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev
Approximation for FIR Filter Design.” IEEE Trans. on Circuits and
Systems II,March 1995. Pgs. 207-216.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev
Sense, Ph.D. Thesis, Georgia Institute of Technology, March 1995.
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[3] Demjanjov, V.F., and V.N. Malozemov. Introduction to Minimax,
New York: John Wiley & Sons, 1974.

See Also fir1 | fir2 | firls | firpm | function_handle
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Purpose Chebyshev Type I analog lowpass filter prototype

Syntax [z,p,k] = cheb1ap(n,Rp)

Description [z,p,k] = cheb1ap(n,Rp) returns the poles and gain of an order n
Chebyshev Type I analog lowpass filter prototype with Rp dB of ripple
in the passband. The function returns the poles in the length n column
vector p and the gain in scalar k. z is an empty matrix, because there
are no zeros. The transfer function is

H s
z s
p s

k
s p s p s p n

( )
( )
( ) ( ( ))( ( )) ( ( ))

= =
− − … −1 2

Chebyshev Type I filters are equiripple in the passband and monotonic
in the stopband. The poles are evenly spaced about an ellipse in the left
half plane. The Chebyshev Type I passband edge angular frequency ω0
is set to 1.0 for a normalized result. This is the frequency at which the
passband ends and the filter has magnitude response of 10-Rp/20.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design,New York: John
Wiley & Sons, 1987. Chapter 7.

See Also besselap | buttap | cheby1 | cheb2ap | ellipap
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Purpose Chebyshev Type I filter order

Syntax [n,Wp] = cheb1ord(Wp,Ws,Rp,Rs)
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs,'s')

Description cheb1ord calculates the minimum order of a digital or analog Chebyshev
Type I filter required to meet a set of filter design specifications.

Digital Domain

[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs) returns the lowest order n of the
Chebyshev Type I filter that loses no more than Rp dB in the passband
and has at least Rs dB of attenuation in the stopband. The scalar (or
vector) of corresponding cutoff frequencies Wp, is also returned. Use the
output arguments n and Wp with the cheby1 function.

Choose the input arguments to specify the stopband and passband
according to the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency,
is a scalar or a two-element vector with values
between 0 and 1, with 1 corresponding to the
normalized Nyquist frequency, π radians per
sample.

Ws Stopband corner frequency Ws, is a scalar or a
two-element vector with values between 0 and 1,
with 1 corresponding to the normalized Nyquist
frequency.

Rp Passband ripple, in decibels. This value is the
maximum permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is
the number of decibels the stopband is down from
the passband.
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Use the following guide to specify filters of different types.

Filter Type Stopband and Passband Specifications

Filter Type
Stopband and Passband
Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws
contains the one specified by
Wp (Ws(1) < Wp(1) < Wp(2) <
Ws(2)).

(0,Ws(1)) and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp
contains the one specified by
Ws (Wp(1) < Ws(1) < Ws(2) <
Wp(2)).

(0,Wp(1)) and
(Wp(2),1)

(Ws(1),Ws(2))

If your filter specifications call for a bandpass or bandstop filter with
unequal ripple in each of the passbands or stopbands, design separate
lowpass and highpass filters according to the specifications in this table,
and cascade the two filters together.

Analog Domain

[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n
and cutoff frequencies Wp for an analog Chebyshev Type I filter. You
specify the frequencies Wp and Ws similar to those described in the
Description of Stopband and Passband Filter Parameters on page 1-82
table above, only in this case you specify the frequency in radians per
second, and the passband or the stopband can be infinite.

Use cheb1ord for lowpass, highpass, bandpass, and bandstop filters as
described in the Filter Type Stopband and Passband Specifications
on page 1-83 table above.
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Examples For data sampled at 1000 Hz, design a lowpass filter with less than
3 dB of ripple in the passband defined from 0 to 40 Hz and at least
60 dB of ripple in the stopband defined from 150 Hz to the Nyquist
frequency (500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs)
% Returns n = 4 Wp =0.0800
[b,a] = cheby1(n,Rp,Wp);
freqz(b,a,512,1000);
title('n=4 Chebyshev Type I Lowpass Filter')

Next design a bandpass filter with a passband of 60 Hz to 200 Hz, with
less than 3 dB of ripple in the passband, and 40 dB attenuation in the
stopbands that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs)
% Returns n =7 Wp =[0.1200 0.4000]
[b,a] = cheby1(n,Rp,Wp);
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freqz(b,a,512,1000);
title('n=7 Chebyshev Type I Bandpass Filter')

Algorithms cheb1ord uses the Chebyshev lowpass filter order prediction formula
described in [1]. The function performs its calculations in the analog
domain for both analog and digital cases. For the digital case, it
converts the frequency parameters to the s-domain before the order and
natural frequency estimation process, and then converts them back
to the z-domain.

cheb1ord initially develops a lowpass filter prototype by transforming
the passband frequencies of the desired filter to 1 rad/s (for low- or
highpass filters) or to -1 and 1 rad/s (for bandpass or bandstop filters).
It then computes the minimum order required for a lowpass filter to
meet the stopband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord | cheby1 | cheb2ord | ellipord | kaiserord
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Purpose Chebyshev Type II analog lowpass filter prototype

Syntax [z,p,k] = cheb2ap(n,Rs)

Description [z,p,k] = cheb2ap(n,Rs) finds the zeros, poles, and gain of an order n
Chebyshev Type II analog lowpass filter prototype with stopband ripple
Rs dB down from the passband peak value. cheb2ap returns the zeros
and poles in length n column vectors z and p and the gain in scalar k. If
n is odd, z is length n-1. The transfer function is

Chebyshev Type II filters are monotonic in the passband and equiripple
in the stopband. The pole locations are the inverse of the pole locations
of cheb1ap, whose poles are evenly spaced about an ellipse in the left
half plane. The Chebyshev Type II stopband edge angular frequency ω0
is set to 1 for a normalized result. This is the frequency at which the
stopband begins and the filter has magnitude response of 10-Rs/20.

Algorithms Chebyshev Type II filters are sometimes called inverse Chebyshev filters
because of their relationship to Chebyshev Type I filters. The cheb2ap
function is a modification of the Chebyshev Type I prototype algorithm:

1 cheb2ap replaces the frequency variable ω with 1/ω, turning the
lowpass filter into a highpass filter while preserving the performance
at ω = 1.

2 cheb2ap subtracts the filter transfer function from unity.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design, New York:
John Wiley & Sons, 1987. Chapter 7.

See Also besselap | buttap | cheb1ap | cheby2 | ellipap
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Purpose Chebyshev Type II filter order

Syntax [n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs,'s')

Description cheb2ord calculates the minimum order of a digital or analog Chebyshev
Type II filter required to meet a set of filter design specifications.

Digital Domain

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs) returns the lowest order n of the
Chebyshev Type II filter that loses no more than Rp dB in the passband
and has at least Rs dB of attenuation in the stopband. The scalar (or
vector) of corresponding cutoff frequencies Ws, is also returned. Use the
output arguments n and Ws in cheby2.

Choose the input arguments to specify the stopband and passband
according to the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is
a scalar or a two-element vector with values between
0 and 1, with 1 corresponding to the normalized
Nyquist frequency, π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a
two-element vector with values between 0 and 1, with
1 corresponding to the normalized Nyquist frequency.

Rp Passband ripple, in decibels. This value is the
maximum permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the
number of decibels the stopband is down from the
passband.

Use the following guide to specify filters of different types.
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Filter Type Stopband and Passband Specifications

Filter Type
Stopband and Passband
Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws
contains the one specified by
Wp (Ws(1) < Wp(1) < Wp(2) <
Ws(2)).

(0,Ws(1))
and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp
contains the one specified by
Ws (Wp(1) < Ws(1) < Ws(2) <
Wp(2)).

(0,Wp(1))
and
(Wp(2),1)

(Ws(1),Ws(2))

If your filter specifications call for a bandpass or bandstop filter with
unequal ripple in each of the passbands or stopbands, design separate
lowpass and highpass filters according to the specifications in this table,
and cascade the two filters together.

Analog Domain

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n
and cutoff frequencies Ws for an analog Chebyshev Type II filter. You
specify the frequencies Wp and Ws similar to those described in the
Description of Stopband and Passband Filter Parameters on page 1-87
table above, only in this case you specify the frequency in radians per
second, and the passband or the stopband can be infinite.

Use cheb2ord for lowpass, highpass, bandpass, and bandstop filters as
described in the Filter Type Stopband and Passband Specifications
on page 1-88 table above.

Examples Example 1

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB
of ripple in the passband defined from 0 to 40 Hz, and at least 60 dB
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of attenuation in the stopband defined from 150 Hz to the Nyquist
frequency (500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)
% Returns n =4 Ws =0.3000
[b,a] = cheby2(n,Rs,Ws);
freqz(b,a,512,1000);
title('n=4 Chebyshev Type II Lowpass Filter')

Example 2

Next design a bandpass filter with a passband of 60 Hz to 200 Hz, with
less than 3 dB of ripple in the passband, and 40 dB attenuation in the
stopbands that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)
% Returns n =7 Ws =[0.1000 0.5000]
[b,a] = cheby2(n,Rs,Ws);
freqz(b,a,512,1000)
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title('n=7 Chebyshev Type II Bandpass Filter')

Algorithms cheb2ord uses the Chebyshev lowpass filter order prediction formula
described in [1]. The function performs its calculations in the analog
domain for both analog and digital cases. For the digital case, it
converts the frequency parameters to the s-domain before the order and
natural frequency estimation process, and then converts them back
to the z-domain.

cheb2ord initially develops a lowpass filter prototype by transforming
the stopband frequencies of the desired filter to 1 rad/s (for low- and
highpass filters) and to -1 and 1 rad/s (for bandpass and bandstop
filters). It then computes the minimum order required for a lowpass
filter to meet the passband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord | cheb1ord | cheby2 | ellipord | kaiserord
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Purpose Chebyshev window

Syntax w = chebwin(L,r)

Description w = chebwin(L,r) returns the column vector w containing the length L
Chebyshev window whose Fourier transform sidelobe magnitude is r dB
below the mainlobe magnitude. The default value for r is 100.0 dB.

Note If you specify a one-point window (set L=1), the value 1 is returned.

Examples Create a 64-point Chebyshev window with 100 dB of sidelobe
attenuation and display the result using WVTool:

L=64;
wvtool(chebwin(L))
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Algorithms An artifact of the equiripple design method used in chebwin is the
presence of impulses at the endpoints of the time-domain response.
This is due to the constant-level sidelobes in the frequency domain. The
magnitude of the impulses are on the order of the size of the spectral
sidelobes. If the sidelobes are large, the effect at the endpoints may be
significant. For more information on this effect, see [2].

References [1] IEEE Programs for Digital Signal Processing. IEEE Press. New
York: John Wiley & Sons, 1979. Program 5.2.

[2] Harris, Fredric J. Multirate Signal Processing for Communication
Systems, New Jersey: Prentice Hall PTR, 2004, pp. 60-64.

See Also gausswin | kaiser | tukeywin | window | wintool | wvtool
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Purpose Chebyshev Type I filter design (passband ripple)

Syntax [z,p,k] = cheby1(n,R,Wp)
[z,p,k] = cheby1(n,R,Wp,'ftype')
[b,a] = cheby1(n,R,Wp)
[b,a] = cheby1(n,R,Wp,'ftype')
[A,B,C,D] = cheby1(n,R,Wp)
[A,B,C,D] = cheby1(n,R,Wp,'ftype')
[z,p,k] = cheby1(n,R,Wp,'s')
[z,p,k] = cheby1(n,R,Wp,'ftype','s')
[b,a] = cheby1(n,R,Wp,'s')
[b,a] = cheby1(n,R,Wp, 'ftype','s')
[A,B,C,D] = cheby1(n,R,Wp,'s')
[A,B,C,D] = cheby1(n,R,Wp,'ftype','s')

Description cheby1 designs lowpass, bandpass, highpass, and bandstop digital and
analog Chebyshev Type I filters. Chebyshev Type I filters are equiripple
in the passband and monotonic in the stopband. Type I filters roll off
faster than type II filters, but at the expense of greater deviation from
unity in the passband.

Digital Domain

[z,p,k] = cheby1(n,R,Wp) designs an order n Chebyshev lowpass
digital Chebyshev filter with normalized passband edge frequency Wp
and R dB of peak-to-peak ripple in the passband. It returns the zeros
and poles in length n column vectors z and p and the gain in the scalar k.

[z,p,k] = cheby1(n,R,Wp,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is one of the following:

• 'high' for a highpass digital filter with normalized passband edge
frequency Wp

• 'low' for a lowpass digital filter with normalized passband edge
frequency Wp

• 'stop' for an order 2*n bandstop digital filter if Wp is a two-element
vector, Wp = [w1 w2]. The stopband is w1 < ω < w2.
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Normalized passband edge frequency is the frequency at which the
magnitude response of the filter is equal to -R dB. For cheby1, the
normalized passband edge frequency Wp is a number between 0 and 1,
where 1 corresponds to half the sample rate, π radians per sample.
Smaller values of passband ripple R lead to wider transition widths
(shallower rolloff characteristics).

If Wp is a two-element vector, Wp = [w1 w2], cheby1 returns an order
2*n bandpass filter with passband w1 < ω < w2.

With different numbers of output arguments, cheby1 directly obtains
other realizations of the filter. To obtain the transfer function form, use
two output arguments as shown below.

Note See “Limitations” on page 1-97 for information about numerical
issues that affect forming the transfer function.

[b,a] = cheby1(n,R,Wp) designs an order n Chebyshev lowpass
digital Chebyshev filter with normalized passband edge frequency Wp
and R dB of peak-to-peak ripple in the passband. It returns the filter
coefficients in the length n+1 row vectors b and a, with coefficients in
descending powers of z.

H z
b b z b n z

a z a n z

n

n
( )

( ) ( ) ( )

( ) ( )
= + +…+ +

+ +…+ +
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[b,a] = cheby1(n,R,Wp,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
as described above.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby1(n,R,Wp) or

[A,B,C,D] = cheby1(n,R,Wp,'ftype') where A, B, C, and D are
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x n Ax n Bu n
y n Cx n Du n
[ ] [ ] [ ]
[ ] [ ] [ ]
+ = +
= +
1

and u is the input, x is the state vector, and y is the output.

Analog Domain

[z,p,k] = cheby1(n,R,Wp,'s') designs an order n lowpass analog
Chebyshev Type I filter with angular passband edge frequency Wp rad/s.
It returns the zeros and poles in length n or 2*n column vectors z and p
and the gain in the scalar k.

Angular passband edge frequency is the frequency at which the
magnitude response of the filter is -R dB. For cheby1, the angular
passband edge frequency Wp must be greater than 0 rad/s.

If Wp is a two-element vector Wp = [w1 w2] with w1 < w2, then
cheby1(n,R,Wp,'s') returns an order 2*n bandpass analog filter with
passband w1 < ω< w2.

[z,p,k] = cheby1(n,R,Wp,'ftype','s') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
as described above.

You can supply different numbers of output arguments for cheby1 to
directly obtain other realizations of the analog filter. To obtain the
transfer function form, use two output arguments as shown below.

[b,a] = cheby1(n,R,Wp,'s') designs an order n lowpass analog
Chebyshev Type I filter with angular passband edge frequency Wp rad/s.
It returns the filter coefficients in length n+1 row vectors b and a, in
descending powers of s, derived from the transfer function
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[b,a] = cheby1(n,R,Wp, 'ftype','s') designs a highpass, lowpass,
or bandstop filter, where the string 'ftype' is 'high', 'low', or
'stop', as described above.
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To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby1(n,R,Wp,'s') or

[A,B,C,D] = cheby1(n,R,Wp,'ftype','s') where A, B, C, and D are
defined as

x Ax Bu
y Cx Du
= +
= +

and u is the input, x is the state vector, and y is the output.

Examples Lowpass Filter

For data sampled at 1000 Hz, design a 9th-order lowpass Chebyshev
Type I filter with 0.5 dB of ripple in the passband and a passband edge
frequency of 300 Hz, which corresponds to a normalized value of 0.6:

[z,p,k] = cheby1(9,0.5,300/500);
[sos,g] = zp2sos(z,p,k); % Convert to SOS form
Hd = dfilt.df2tsos(sos,g); % Create a dfilt object
h = fvtool(Hd) % Plot magnitude response
set(h,'Analysis','freq') % Display frequency response

The frequency response of the filter is

freqz(b,a,512,1000)
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Limitations In general, you should use the [z,p,k] syntax to design IIR filters.
To analyze or implement your filter, you can then use the [z,p,k]
output with zp2sos and an sos dfilt structure. For higher order filters
(possibly starting as low as order 8), numerical problems due to roundoff
errors may occur when forming the transfer function using the [b,a]
syntax. The following example illustrates this limitation:

n = 6;
r = 0.1;
Wn = ([2.5e6 29e6]/500e6);
ftype = 'bandpass';

% Transfer Function design
[b,a] = cheby1(n,r,Wn,ftype);
h1=dfilt.df2(b,a); % This is an unstable filter.
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% Zero-Pole-Gain design
[z, p, k] = cheby1(n,r, Wn,ftype);
[sos,g]=zp2sos(z,p,k);
h2=dfilt.df2sos(sos,g);

% Plot and compare the results
hfvt=fvtool(h1,h2,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

Algorithms cheby1 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the
cheb1ap function.

2 It converts the poles, zeros, and gain into state-space form.
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3 It transforms the lowpass filter into a bandpass, highpass, or
bandstop filter with desired cutoff frequencies, using a state-space
transformation.

4 For digital filter design, cheby1 uses bilinear to convert the analog
filter into a digital filter through a bilinear transformation with
frequency prewarping. Careful frequency adjustment guarantees
that the analog filters and the digital filters will have the same
frequency response magnitude at Wp or w1 and w2.

5 It converts the state-space filter back to transfer function or
zero-pole-gain form, as required.

See Also besself | butter | cheb1ap | cheb1ord | cheby2 | ellip
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Purpose Chebyshev Type II filter design (stopband ripple)

Syntax [z,p,k] = cheby2(n,R,Wst)
[z,p,k] = cheby2(n,R,Wst,'ftype')
[b,a] = cheby2(n,R,Wst)
[b,a] = cheby2(n,R,Wst,'ftype')
[A,B,C,D] = cheby2(n,R,Wst)
[A,B,C,D] = cheby2(n,R,Wst,'ftype')
[z,p,k] = cheby2(n,R,Wst,'s')
[z,p,k] = cheby2(n,R,Wst,'ftype','s')
[b,a] = cheby2(n,R,Wst,'s')
[b,a] = cheby2(n,R,Wst,'ftype','s')
[A,B,C,D] = cheby2(n,R,Wst,'s')
[A,B,C,D] = cheby2(n,R,Wst,'ftype','s')

Description cheby2 designs lowpass, highpass, bandpass, and bandstop digital
and analog Chebyshev Type II filters. Chebyshev Type II filters are
monotonic in the passband and equiripple in the stopband. Type II
filters do not roll off as fast as type I filters, but are free of passband
ripple.

Digital Domain

[z,p,k] = cheby2(n,R,Wst) designs an order n lowpass digital
Chebyshev Type II filter with normalized stopband edge frequency
Wst and stopband ripple R dB down from the peak passband value. It
returns the zeros and poles in length n column vectors z and p and the
gain in the scalar k.

Normalized stopband edge frequency is the beginning of the stopband,
where the magnitude response of the filter is equal to -R dB. For
cheby2, the normalized stopband edge frequency Wst is a number
between 0 and 1, where 1 corresponds to half the sample rate. Larger
values of stopband attenuation R lead to wider transition widths
(shallower rolloff characteristics).

If Wst is a two-element vector, Wst = [w1 w2], cheby2 returns an order
2*n bandpass filter with passband w1 < ω < w2.
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[z,p,k] = cheby2(n,R,Wst,'ftype')designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is one of the following:

• 'high' for a highpass digital filter with normalized stopband edge
frequency Wst

• 'low' for a lowpass digital filter with normalized stopband edge
frequency Wst

• 'stop' for an order 2*n bandstop digital filter if Wst is a two-element
vector, Wst = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby2 directly obtains
other realizations of the filter. To obtain the transfer function form, use
two output arguments as shown below.

Note See “Limitations” on page 1-104 below for information about
numerical issues that affect forming the transfer function.

[b,a] = cheby2(n,R,Wst) designs an order n lowpass digital
Chebyshev Type II filter with normalized stopband edge frequency
Wst and stopband ripple R dB down from the peak passband value. It
returns the filter coefficients in the length n+1 row vectors b and a, with
coefficients in descending powers of z.

H z
B z
A z

b b z b n z

a z a n z

n
( )

( )
( )

( ) ( ) ( )

( ) ( )
= = + + + +

+ + + +

− −

− −
1 2 1

1 2 1

1

1


 nn

[b,a] = cheby2(n,R,Wst,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
as described above.

To obtain state-space form, use four output arguments as shown below.

[A,B,C,D] = cheby2(n,R,Wst) or

[A,B,C,D] = cheby2(n,R,Wst,'ftype') where A, B, C, and D are
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x n Ax n Bu n
y n Cx n Du n
[ ] [ ] [ ]
[ ] [ ] [ ]
+ = +

= +
1

     

and u is the input, x is the state vector, and y is the output.

Analog Domain

[z,p,k] = cheby2(n,R,Wst,'s') designs an order n lowpass analog
Chebyshev Type II filter with angular stopband edge frequency Wst
rad/s.. It returns the zeros and poles in length n or 2*n column vectors z
and p and the gain in the scalar k.

Angular stopband edge frequency is the frequency at which the
magnitude response of the filter is equal to -R dB. For cheby2, the
angular stopband edge frequency Wst must be greater than 0 rad/s.

If Wst is a two-element vector Wst = [w1 w2] with w1 < w2, then
cheby2(n,R,Wst,'s') returns an order 2*n bandpass analog filter
with passband w1 < ω< w2.

[z,p,k] = cheby2(n,R,Wst,'ftype','s') designs a highpass,
lowpass, or bandstop filter, where the string 'ftype' is 'high', 'low',
or 'stop', as described above.

With different numbers of output arguments, cheby2 directly obtains
other realizations of the analog filter. To obtain the transfer function
form, use two output arguments as shown below:

[b,a] = cheby2(n,R,Wst,'s') designs an order n lowpass analog
Chebyshev Type II filter with angular stopband edge frequency Wst
rad/s.. It returns the filter coefficients in the length n+1 row vectors b
and a, with coefficients in descending powers of s, derived from the
transfer function.

H s
B s
A s

b s b s b n

s a s a n

n n

n n
( )

( )
( )

( ) ( ) ( )

( ) ( )
= = + + + +

+ + + +

−

−
1 2 1

2 1

1

1




[b,a] = cheby2(n,R,Wst,'ftype','s') designs a highpass , lowpass,
or bandstop filter, where the string 'ftype' is 'high', 'low', or
'stop', as described above.
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To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby2(n,R,Wst,'s') or

[A,B,C,D] = cheby2(n,R,Wst,'ftype','s') where A, B, C, and D are

x Ax Bu
y Cx Du
= +
= +

and u is the input, x is the state vector, and y is the output.

Examples Lowpass Filter

For data sampled at 1000 Hz, design a ninth-order lowpass Chebyshev
Type II filter with stopband attenuation 20 dB down from the passband
and a stopband edge frequency of 300 Hz, which corresponds to a
normalized value of 0.6:

[z,p,k] = cheby2(9,20,300/500);
[sos,g] = zp2sos(z,p,k); % Convert to SOS form
Hd = dfilt.df2tsos(sos,g); % Create a dfilt object
h = fvtool(Hd); % Plot magnitude response
set(h,'Analysis','freq') % Display frequency response
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Limitations In general, you should use the [z,p,k] syntax to design IIR filters.
To analyze or implement your filter, you can then use the [z,p,k]
output with zp2sos and an sos dfilt structure. For higher order filters
(possibly starting as low as order 8), numerical problems due to roundoff
errors may occur when forming the transfer function using the [b,a]
syntax. The following example illustrates this limitation:

n = 6;
r = 80;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,a] = cheby2(n,r,Wn,ftype);
h1=dfilt.df2(b,a); % This is an unstable filter.
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% Zero-Pole-Gain design
[z, p, k] = cheby2(n,r,Wn,ftype);
[sos,g]=zp2sos(z,p,k);
h2=dfilt.df2sos(sos,g);

% Plot and compare the results
hfvt=fvtool(h1,h2,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

Algorithms cheby2 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the
cheb2ap function.

2 It converts poles, zeros, and gain into state-space form.
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3 It transforms the lowpass filter into a bandpass, highpass, or
bandstop filter with desired cutoff frequencies, using a state-space
transformation.

4 For digital filter design, cheby2 uses bilinear to convert the analog
filter into a digital filter through a bilinear transformation with
frequency prewarping. Careful frequency adjustment guarantees
that the analog filters and the digital filters will have the same
frequency response magnitude at Wst or w1 and w2.

5 It converts the state-space filter back to transfer function or
zero-pole-gain form, as required.

See Also besself | butter | cheb2ap | cheb1ord | cheby1 | ellip

1-106



chirp

Purpose Swept-frequency cosine

Syntax y = chirp(t,f0,t1,f1)
y = chirp(t,f0,t1,f1,'method')
y = chirp(t,f0,t1,f1,'method',phi)
y = chirp(t,f0,t1,f1,'quadratic',phi,'shape')

Description y = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency
cosine signal at the time instances defined in array t, where f0 is
the instantaneous frequency at time 0, and f1 is the instantaneous
frequency at time t1. f0 and f1 are both in hertz. If unspecified, f0 is e-6

for logarithmic chirp and 0 for all other methods, t1 is 1, and f1 is 100.

y = chirp(t,f0,t1,f1,'method') specifies alternative sweep method
options, where method can be:

• linear, which specifies an instantaneous frequency sweep fi(t)given
by

f t f ti ( ) = +0 β

where

β = −( ) /f f t1 0 1

and the default value for f0 is 0. β ensures that the desired frequency
breakpoint f1 at time t1 is maintained.

• quadratic, which specifies an instantaneous frequency sweep fi(t)
given by

f t f ti ( ) = +0
2β

where

β = −( ) /f f t1 0 1
2
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and the default value for f0 is 0. If f0 > f1 (downsweep), the default
shape is convex. If f0 < f1 (upsweep), the default shape is concave.

• logarithmic specifies an instantaneous frequency sweep fi(t) given
by

f t fi
t( ) = ×0 β

where

β = ⎛

⎝
⎜

⎞

⎠
⎟

f
f

t1

0

1

1

and the default value for f0 is 1e
-6. Both an upsweep (f1 > f0) and a

downsweep (f0 > f1) of frequency is possible.

Each of the above methods can be entered as 'li', 'q', and 'lo',
respectively.

y = chirp(t,f0,t1,f1,'method',phi) allows an initial phase phi
to be specified in degrees. If unspecified, phi is 0. Default values are
substituted for empty or omitted trailing input arguments.

y = chirp(t,f0,t1,f1,'quadratic',phi,'shape') specifies the
shape of the quadratic swept-frequency signal’s spectrogram. shape is
either concave or convex, which describes the shape of the parabola in
the positive frequency axis. If shape is omitted, the default is convex for
downsweep (f0 > f1) and is concave for upsweep (f0 < f1).
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Examples Example 1

Compute the spectrogram of a chirp with linear instantaneous
frequency deviation:

t = 0:0.001:2; % 2 secs @ 1kHz sample rate
y = chirp(t,0,1,150); % Start @ DC,

% cross 150Hz at t=1 sec
spectrogram(y,256,250,256,1E3,'yaxis')

1-109



chirp

Example 2

Compute the spectrogram of a chirp with quadratic instantaneous
frequency deviation:

% –2 secs @ 1kHz sample rate
t = -2:0.001:2;

% Start @ 100Hz, cross 200Hz at t=1 sec
y = chirp(t,100,1,200,'quadratic');

spectrogram(y,128,120,128,1E3,'yaxis')
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Example 3

Compute the spectrogram of a convex quadratic chirp:

t = -1:0.001:1; % +/-1 second @ 1kHz sample rate
fo = 100; f1 = 400; % Start at 100Hz, go up to 400Hz
y = chirp(t,fo,1,f1,'q',[],'convex');
spectrogram(y,256,200,256,1000,'yaxis')
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Example 4

Compute the spectrogram of a concave quadratic chirp:

t = 0:0.001:1; % 1 second @ 1kHz sample rate
fo = 100; f1 = 25; % Start at 100Hz, go down to 25Hz
y = chirp(t,fo,1,f1,'q',[],'concave');
spectrogram(y,hanning(256),128,256,1000,'yaxis')
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Example 5

Compute the spectrogram of a logarithmic chirp:

t = 0:0.001:10; % 10 seconds @ 1kHz sample rate
fo = 10; f1 = 400; % Start at 10Hz, go up to 400Hz
y = chirp(t,fo,10,f1,'logarithmic');
spectrogram(y,256,200,256,1000,'yaxis')
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See Also cos | diric | gauspuls | pulstran | rectpuls | sawtooth | sin |
sinc | square | tripuls
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Purpose Convolution matrix

Syntax A = convmtx(h,n)

Description A convolution matrix is a matrix, formed from a vector, whose product
with another vector is the convolution of the two vectors.

A = convmtx(h,n) returns the convolution matrix, A, such that the
product of A and a vector, x, is the convolution of h and x. If h is a
column vector of length m, A is (m+n-1)-by-n and the product of A and a
column vector, x, of length n is the convolution of h and x. If h is a row
vector of length m, A is n-by-(m+n-1) and the product of a row vector, x,
of length n with A is the convolution of h and x.

Examples Generate a simple convolution matrix:

h = [1 2 3 2 1];
convmtx(h,7);

Note that convmtx handles edge conditions by zero padding.

In practice, it is more efficient to compute convolution using

y = conv(c,x);

than by using a convolution matrix.

n = length(x);
y = convmtx(c,n)*x;

Algorithms convmtx uses the function toeplitz to generate the convolution matrix.

See Also conv | convn | conv2 | dftmtx
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Purpose Data matrix for autocorrelation matrix estimation

Syntax X = corrmtx(x,m)
X = corrmtx(x,m,'method')
[X,R] = corrmtx(...)

Description X = corrmtx(x,m) returns an (n+m)-by-(m+1) rectangular Toeplitz
matrix X, such that X'X is a (biased) estimate of the autocorrelation
matrix for the length n data vector x.

X = corrmtx(x,m,'method') computes the matrix X according to the
method specified by the string ’method’:

• 'autocorrelation': (default) X is the (n+m)-by-(m+1) rectangular
Toeplitz matrix that generates an autocorrelation estimate for the
length n data vector x, derived using prewindowed and postwindowed
data, based on an mth order prediction error model.

• 'prewindowed': X is the n-by-(m+1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length n data vector x,
derived using prewindowed data, based on an mth order prediction
error model.

• 'postwindowed': X is the n-by-(m+1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length n data vector x,
derived using postwindowed data, based on an mth order prediction
error model.

• 'covariance': X is the (n-m)-by-(m+1) rectangular Toeplitz matrix
that generates an autocorrelation estimate for the length n data
vector x, derived using nonwindowed data, based on an mth order
prediction error model.

• 'modified': X is the 2(n-m)-by-(m+1) modified rectangular Toeplitz
matrix that generates an autocorrelation estimate for the length n
data vector x, derived using forward and backward prediction error
estimates, based on an mth order prediction error model.

[X,R] = corrmtx(...) also returns the (m+1)-by-(m+1) autocorrelation
matrix estimate R, calculated as X'*X.
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Examples n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
X=corrmtx(s,12,'mod');

Algorithms The Toeplitz data matrix computed by corrmtx depends on the method
you select. The matrix determined by the autocorrelation (default)
method is given by the following matrix.

X

x

x m x

x n m x m

x n x n m

x

=

+

− +

−

( )

( ) ( )

( ) ( )

( ) ( )

1 0

1 1

1

0



  



  



  



  

 (( )n

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

In this matrix, m is the same as the input argument m to corrmtx, and
n is length(x). Variations of this matrix are used to return the output
X of corrmtx for each method:

• 'autocorrelation': (default) X = X, above.

• 'prewindowed': X is the n-by-(m+1) submatrix of X that is given by
the portion of X above the lower gray line.

• 'postwindowed': X is the n-by-(m+1) submatrix of X that is given by
the portion of X below the upper gray line.

• ’covariance’: X is the (n-m)-by-(m+1) submatrix of X that is given by
the portion of X between the two gray lines.

• 'modified': X is the 2(n-m)-by-(m+1) matrix Xmod shown below.
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X
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References [1] Marple, S.L. Digital Spectral Analysis,Englewood Cliffs, NJ,
Prentice-Hall, 1987, pp. 216-223.

See Also peig | pmusic | rooteig | rootmusic | xcorr
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Purpose Cross power spectral density

Syntax Pxy = cpsd(x,y)
Pxy = cpsd(x,y,window)
Pxy = cpsd(x,y,window,noverlap)
[Pxy,W] = cpsd(x,y,window,noverlap,nfft)
[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs)
[...] = cpsd(...,'twosided')
cpsd(...)

Description Pxy = cpsd(x,y) estimates the cross power spectral density Pxy of
the discrete-time signals x and y using the Welch’s averaged, modified
periodogram method of spectral estimation. The cross power spectral
density is the distribution of power per unit frequency and is defined as

P R m exy xy
j m

m

ω ω( ) = ( ) −
=−∞

∞

∑

The cross-correlation sequence is defined as

R m E x y E x yxy n m n n n m( ) = ∗{ } = ∗{ }+ −

where xn and yn are jointly stationary random processes, −∞ < < ∞n ,
and E {· } is the expected value operator.

For real x and y, cpsd returns a one-sided CPSD and for complex x or
y, it returns a two-sided CPSD.

cpsd uses the following default values:
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Parameter Description Default Value

nfft FFT length which
determines the frequencies
at which the PSD is
estimated

For real x and y, the length
of Pxy is (nfft/2+1) if nfft
is even or (nfft+1)/2 if
nfft is odd. For complex
x or y, the length of Pxy is
nfft.

If nfft is greater than the
signal length, the data is
zero-padded. If nfft is
less than the signal length,
the segment is wrapped
using datawrap so that the
length is equal to nfft.

Maximum of 256 or the
next power of 2 greater
than the length of each
section of x or y

fs Sampling frequency 1

window Windowing function and
number of samples to use
for each section

Periodic Hamming window
of length to obtain eight
equal sections of x and y

noverlap Number of samples by
which the sections overlap

Value to obtain 50%
overlap

Note You can use the empty matrix [] to specify the default
value for any input argument except x or y. For example, Pxy =
cpsd(x,y,[],[],128) uses a Hamming window, default noverlap to
obtain 50% overlap, and the specified 128 nfft.

1-120



cpsd

Pxy = cpsd(x,y,window) specifies a windowing function, divides x and
y into overlapping sections of the specified window length, and windows
each section using the specified window function. If you supply a scalar
for window, Pxy uses a Hamming window of that length. The x and y
vectors are divided into eight equal sections of that length. If the signal
cannot be sectioned evenly with 50% overlap, it is truncated.

Pxy = cpsd(x,y,window,noverlap) overlaps the sections of x by
noverlap samples. noverlap must be an integer smaller than the
length of window.

[Pxy,W] = cpsd(x,y,window,noverlap,nfft) uses the specified FFT
length nfft in estimating the CPSD. It also returns W, which is the
vector of normalized frequencies (in rad/sample) at which the CPSD
is estimated. For real signals, the range of W is [0, pi] when nfft is
even and [0, pi) when nfft is odd. For complex signals, the range of W
is [0, 2*pi).

[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs) returns Pxy as a
function of frequency and a vector F of frequencies at which the CPSD
is estimated. fs is the sampling frequency in Hz. For real signals, the
range of F is [0, fs/2] when nfft is even and [0, fs/2) when nfft is odd.
For complex signals, the range of F is [0, fs).

[...] = cpsd(...,'twosided') returns the two-sided CPSD of real
signals x and y. The length of the resulting Pxy is nfft and its range is
[0, 2*pi) if you do not specify fs. If you specify fs, the range is [0,fs).
Entering’onesided’for a real signal produces the default. You can place
the ’onesided’ or ’twosided’ string in any position after the noverlap
parameter.

cpsd(...) plots the CPSD versus frequency in the current figure
window.

Examples Generate two colored noise signals and plot their CPSD. Specify a
length 1024 FFT and a 500 point triangular window with no overlap.

rng default;
h = fir1(30,0.2,rectwin(31));
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h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
cpsd(x,y,triang(500),250,1024)

Algorithms cpsd uses Welch’s averaged periodogram method. See the references
listed below.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 414-419.
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[2] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation
of Power Spectra: A Method Based on Time Averaging Over Short,
Modified Periodograms.” IEEE Trans. Audio Electroacoust, Vol. AU-15
(June 1967). Pgs. 70-73.

[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing, Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 737.

See Also dspdata | mscohere | pburg | pcov | peig | periodogram | pmcov |
pmtm | pmusic | pwelch | pyulear | spectrum | tfestimate
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Purpose Chirp z-transform

Syntax y = czt(x,m,w,a)
y = czt(x)

Description y = czt(x,m,w,a) returns the chirp z-transform of signal x. The chirp
z-transform is the z-transform of x along a spiral contour defined by w
and a. m is a scalar that specifies the length of the transform, w is the
ratio between points along the z-plane spiral contour of interest, and
scalar a is the complex starting point on that contour. The contour, a
spiral or “chirp” in the z-plane, is given by

z = a*(w.^-(0:m-1))

y = czt(x) uses the following default values:

• m = length(x)

• w = exp(-j*2*pi/m)

• a = 1

With these defaults, czt returns the z-transform of x at m equally
spaced points around the unit circle. This is equivalent to the discrete
Fourier transform of x, or fft(x). The empty matrix [] specifies the
default value for a parameter.

If x is a matrix, czt(x,m,w,a) transforms the columns of x.

Algorithms czt uses the next power-of-2 length FFT to perform a fast convolution
when computing the z-transform on a specified chirp contour [1].

Examples Create a random vector x of length 1013 and compute its DFT using czt:

rng default;
x = randn(1013,1);
y = czt(x);
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Use czt to zoom in on a narrow-band section (100 to 150 Hz) of a filter’s
frequency response. First design the filter:

h = fir1(30,125/500,rectwin(31)); % filter

fs = 1000; f1 = 100; f2 = 150; % in hertz
m = 1024;
w = exp(-j*2*pi*(f2-f1)/(m*fs));
a = exp(j*2*pi*f1/fs);

Establish frequency and CZT parameters:

Compute the frequency response of the filter using fft and czt:

y = fft(h,1000);
z = czt(h,m,w,a);
fy = (0:length(y)-1)'*1000/length(y);
fz = ((0:length(z)-1)'*(f2-f1)/length(z)) + f1;
subplot(211);
plot(fy(1:500),abs(y(1:500))); axis([1 500 0 1.2])
xlabel('Hz'); ylabel('Magnitude');
title('Magnitude Response using FFT')
subplot(212);
plot(fz,abs(z)); axis([f1 f2 0 1.2])
xlabel('Hz'); ylabel('Magnitude');
title('Magnitude Response using CZT ')
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Diagnostics If m, w, or a is not a scalar, czt gives the following error message:

Inputs M, W, and A must be scalars.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 393-399.

See Also fft | freqz
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Purpose Convert energy or power measurements to decibels

Syntax dboutput = db(X)
dboutput = db(X,SignalType)
dboutput = db(X,R)
dboutput = db(X,'voltage',R)

Description dboutput = db(X) converts the elements of the vector or matrix X to
decibels (dB). The elements of X are voltage measurements across a
resistance of 1 ohm.

dboutput = db(X,SignalType) specifies the signal type represented
by the elements of X as 'voltage' or 'power'. The entries are not case
sensitive. The default value is 'voltage'. For voltage measurements,
the resistance defaults to 1 ohm. If you specify SignalType as 'power',
the elements of X must be nonnegative.

dboutput = db(X,R) specifies the resistance R for voltage
measurements. You can specify a resistance only when the signal
measurements are voltages.

dboutput = db(X,'voltage',R) specifies the resistance R for voltage
measurements. This syntax is equivalent to db(X,R).

Input
Arguments

X

Signal measurements. X must be a vector or matrix. If the elements of
X are power measurements, all elements must be nonnegative.

SignalType

Type of signal measurements. Valid entries for SignalType are
'voltage' or 'power'. The entries are not case sensitive. If you specify
SignalType as 'power', the elements of X must be nonnegative.

Default: 'voltage'

R
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Resistive load in ohms. You can specify resistance only when the
SignalType is 'voltage'.

Default: 1

Output
Arguments

dboutput

The energy or power measurements in the input X in decibels.
dboutput has the same dimensions as the input X.

If the input X contains voltage (energy) measurements, dboutput is:

dB X R 10 10
2log (| | / )

If the input X contains power measurements, dboutput is:

dB X 10 10log ( )

Examples Convert voltage to decibels. Assume that the resistance is 2 ohms.

V = 1;
R = 2;
dboutput = db(V,2)
% equivalent to 10*log10(1/2)

Convert a vector of power measurements to decibels.

rng default
X = abs(randn(10,1));
dboutput = db(X,'power')

Alternatives • mag2db— Converts magnitude measurements to decibels.

• pow2db— Converts power measurements to decibels.

See Also db2mag | db2pow | mag2db | pow2db
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Purpose Convert decibels (dB) to magnitude

Syntax y = db2mag(ydb)

Description y = db2mag(ydb) returns the corresponding magnitude y for a given
decibel (dB) value ydb. The relationship between magnitude and
decibels is ydb = 20*log10(y).

See Also mag2db
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Purpose Convert decibels (dB) to power

Syntax y = db2pow(ydb)

Description y = db2pow(ydb) returns the corresponding power value y for a given
decibel (dB) value ydb. The relationship between power and decibels
is ydb = 10*log10(y).

See Also pow2db
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Purpose Discrete cosine transform (DCT)

Syntax y = dct(x)
y = dct(x,n)

Description y = dct(x) returns the unitary discrete cosine transform of x
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N is the length of x, and x and y are the same size. If x is a matrix, dct
transforms its columns. The series is indexed from n = 1 and k = 1
instead of the usual n = 0 and k = 0 because MATLAB vectors run from
1 to N instead of from 0 to N- 1.

y = dct(x,n) pads or truncates x to length n before transforming.

The DCT is closely related to the discrete Fourier transform. You can
often reconstruct a sequence very accurately from only a few DCT
coefficients, a useful property for applications requiring data reduction.

Examples Find how many DCT coefficients represent 99% of the energy in a
sequence:

x = (1:100) + 50*cos((1:100)*2*pi/40);
X = dct(x);
[XX,ind] = sort(abs(X)); ind = fliplr(ind);
i = 1;
while (norm([X(ind(1:i)) zeros(1,100-i)])/norm(X)<.99)
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i = i + 1;
end
% i = 3

References [1] Jain, A.K. Fundamentals of Digital Image Processing, Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell. JPEG Still Image Data
Compression Standard, New York, NY: Van Nostrand Reinhold, 1993.
Chapter 4.

See Also fft | idct | dct2 | idct2
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Purpose Decimation — decrease sampling rate

Syntax y = decimate(x,r)
y = decimate(x,r,n)
y = decimate(x,r,'fir')
y = decimate(x,r,n,'fir')

Description Decimation reduces the original sampling rate for a sequence to a lower
rate, the opposite of interpolation. The decimation process filters the
input data with a lowpass filter and then resamples the resulting
smoothed signal at a lower rate.

y = decimate(x,r) reduces the sample rate of x by a factor r. The
decimated vector y is r times shorter in length than the input vector
x. By default, decimate employs an eighth-order lowpass Chebyshev
Type I filter with a cutoff frequency of 0.8*(Fs/2)/r. It filters the input
sequence in both the forward and reverse directions to remove all phase
distortion, effectively doubling the filter order.

y = decimate(x,r,n) uses an order n Chebyshev filter. Orders above
13 are not recommended because of numerical instability. In this case,
a warning is displayed.

Note For better results when r is greater than 13, you should break r
into its factors and call decimate several times.

y = decimate(x,r,'fir') uses an order 30 FIR filter, instead of
the Chebyshev IIR filter. Here decimate filters the input sequence
in only one direction. This technique conserves memory and is useful
for working with long sequences.

y = decimate(x,r,n,'fir') uses an order n FIR filter.

Examples Decimate a signal by a factor of four:

t = 0:.00025:1; % Time vector
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x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = decimate(x,4);

View the original and decimated signals:

stem(x(1:120)), axis([0 120 -2 2]) % Original signal
title('Original Signal')
figure
stem(y(1:30)) % Decimated signal
title('Decimated Signal')

Algorithms decimate uses decimation algorithms 8.2 and 8.3 from [1]:

1 It designs a lowpass filter. By default, decimate uses a Chebyshev
Type I filter with normalized cutoff frequency 0.8/r and 0.05 dB of
passband ripple. For the fir option, decimate designs a lowpass FIR
filter with cutoff frequency 1/r using fir1.

2 For the FIR filter, decimate applies the filter to the input vector in
one direction. In the IIR case, decimate applies the filter in forward
and reverse directions with filtfilt.

3 decimate resamples the filtered data by selecting every rth point.
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Note Depending on the CPU and operating system of your computer,
the decimate function may use a lower filter order. If the specified
filter order will produce passband distortion, caused by roundoff errors
accumulated from the convolutions needed to create the transfer
function, the filter order is automatically reduced.

Diagnostics If r is not an integer, decimate gives the following error message:

Resampling rate R must be an integer.

If n specifies an IIR filter with order greater than 13, decimate gives
the following warning:

Warning: IIR filters above order 13 may be unreliable.

References [1] IEEE Programs for Digital Signal Processing, IEEE Press. New
York: John Wiley & Sons, 1979. Chapter 8.

See Also cheby1 | downsample | filtfilt | fir1 | mfilt | interp | resample
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Purpose Demodulation for communications simulation

Syntax x = demod(y,fc,fs,'method')
x = demod(y,fc,fs,'method',opt)
x = demod(y,fc,fs,'pwm','centered')

Description demod performs demodulation, that is, it obtains the original signal
from a modulated version of the signal. demod undoes the operation
performed by modulate.

x = demod(y,fc,fs,'method') and

x = demod(y,fc,fs,'method',opt) demodulate the real carrier signal
y with a carrier frequency fc and sampling frequency fs, using one of
the options listed below for method. (Note that some methods accept
an option, opt.)

Note Use demod and modulate in the Signal Processing Toolbox™
with real-valued signals to obtain real-valued outputs. demod and
modulate are not intended to accept complex-valued inputs or produce
complex-valued outputs.

Method Description

amdsb-sc

or

am

Amplitude demodulation, double sideband,
suppressed carrier. Multiplies y by a sinusoid of
frequency fc and applies a fifth-order Butterworth
lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);

[b,a] = butter(5,fc*2/fs);

x = filtfilt(b,a,x);

amdsb-tc Amplitude demodulation, double sideband,
transmitted carrier. Multiplies y by a sinusoid of
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Method Description

frequency fc, and applies a fifth-order Butterworth
lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);

[b,a] = butter(5,fc*2/fs);

x = filtfilt(b,a,x);

If you specify opt, demod subtracts scalar opt from x.
The default value for opt is 0.

amssb Amplitude demodulation, single sideband. Multiplies
y by a sinusoid of frequency fc and applies
a fifth-order Butterworth lowpass filter using
filtfilt.

x = y.*cos(2*pi*fc*t);

[b,a] = butter(5,fc*2/fs);

x = filtfilt(b,a,x);

fm Frequency demodulation. Demodulates the FM
waveform by modulating the Hilbert transform of y
by a complex exponential of frequency -fc Hz and
obtains the instantaneous frequency of the result.

pm Phase demodulation. Demodulates the PM waveform
by modulating the Hilbert transform of y by a complex
exponential of frequency -fc Hz and obtains the
instantaneous phase of the result.

ppm Pulse-position demodulation. Finds the pulse
positions of a pulse-position modulated signal y. For
correct demodulation, the pulses cannot overlap. x is
length length(t)*fc/fs.
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Method Description

pwm Pulse-width demodulation. Finds the pulse widths of
a pulse-width modulated signal y. demod returns in
x a vector whose elements specify the width of each
pulse in fractions of a period. The pulses in y should
start at the beginning of each carrier period, that is,
they should be left justified.

qam Quadrature amplitude demodulation.

[x1,x2] = demod(y,fc,fs,'qam') multiplies y by
a cosine and a sine of frequency fc and applies a
fifth-order Butterworth lowpass filter using filtfilt.

x1 = y.*cos(2*pi*fc*t);

x2 = y.*sin(2*pi*fc*t);

[b,a] = butter(5,fc*2/fs);

x1 = filtfilt(b,a,x1);

x2 = filtfilt(b,a,x2);

The default method is 'am'. In all cases except 'ppm' and 'pwm', x is
the same size as y.

If y is a matrix, demod demodulates its columns.

x = demod(y,fc,fs,'pwm','centered') finds the pulse widths assuming
they are centered at the beginning of each period. x is length
length(y)*fc/fs.

See Also modulate | vco | fskdemod | genqamdemod | mskdemod | pamdemod |
pmdemod | qamdemod
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Purpose Apply design method to filter specification object

Syntax H = design(D)
H = design(D,METHOD)
H = design(D,METHOD,PARAM1,VALUE1,PARAM2,VALUE2,...)
H = design(D,METHOD,OPTS)
Hs = design(D,...,'SystemObject',sysobjflag)

Description H = design(D) uses the filter specifications object D to generate
a filter H. When you do not provide a design method as an
input argument, design uses a default design method. Use
designmethods(D,'default') to see the default design method for
your filter specifications object.

H = design(D,METHOD) forces the design method specified by the string
METHOD. METHOD must be one of the strings returned by designmethods.
Use designmethods(D,'default') to determine which algorithm is
used by default.

The design method you provide as the designmethod input argument
must be one of the methods returned by

designmethods(d)

To help you design filters more quickly, the input argument METHOD
accepts a variety of special keywords that force design to behave in
different ways. The following table presents the keywords you can use
for METHOD and how design responds to the keyword.

Designmethod
Keyword Description of the design Response

'FIR' Forces design to produce an FIR filter. When
no FIR design method exists for object D, design
returns an error.

'IIR' Forces design to produce an IIR filter. When
no IIR design method exists for object D, design
returns an error.
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Designmethod
Keyword Description of the design Response

'ALLFIR' Produces filters from every applicable FIR design
method for the specifications in D, one filter for
each design method. As a result, design returns
multiple filters in the output object.

'ALLIIR' Produces filters from every applicable IIR design
method for the specifications in D, one filter for
each design method. As a result, design returns
multiple filters in the output object.

'ALL' Designs filters using all applicable design methods
for the specifications object D. As a result, design
returns multiple filters, one for each design
method. design uses the design methods in the
order that designmethods(D) returns them.

Keywords are not case sensitive

When design returns multiple filters in the output object, use indexing
to see the individual filters. For example, to see the third filter in
H, enter

H(3)

H = design(D,METHOD,PARAM1,VALUE1,PARAM2,VALUE2,...) specifies
design-method options. Use help(D,METHOD) for complete information
on which design-method-specific options are available. You can
also use designopts(D,METHOD) for a less-detailed listing of the
design-method-specific options.

H = design(D,METHOD,OPTS) specifies design-method options using
the structure OPTS. OPTS is usually obtained from designopts and
then specified as an input to design. Use help(D,METHOD) for more
information on optional inputs.

Hs = design(D,...,'SystemObject',sysobjflag) uses the filter
specifications object D to generate a filter System object Hs when
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sysobjflag is true. To generate System objects, you must have
the DSP System Toolbox™ product installed. When sysobjflag is
false, the function generates a dfilt or mfilt object H, as described
previously. Design methods and design options for filter System objects
are not necessarily the same as those for dfilt and mfilt objects. To
check design methods for System objects, use designmethods with the
'SystemObject',sysobjflag syntax.

If you are specifying design-method-specific options using OPTS, you can
also set OPTS.SystemObject to true instead of calling design with the
'SystemObject',sysobjflag syntax.

Examples Design an FIR equiripple lowpass filter. The passband edge frequency
is 0.2π radians/sample, and the stopband edge frequency is 0.25π
radians/sample. The passband ripple is 0.5 dB, and the stopband
attenuation is 40 dB.

D = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.25,0.5,40);
H = design(D); % Uses the default equiripple method.

If you have the DSP System Toolbox software installed, you can design
a minimum-phase FIR equripple filter. Design a minimum–phase filter
and compare the pole-zero plots of the original and minimum-phase
designs.

Hmin = design(D,'equiripple','MinPhase',true);
hfvt = fvtool([H Hmin],'analysis','polezero');
legend(hfvt,'Original Design','Minimum Phase Design');

Design a Butterworth lowpass filter. The passband edge frequency
is 0.2π radians/sample, and the stopband edge frequency is 0.25π
radians/sample. The passband ripple is 0.5 dB, and the stopband
attenuation is 40 dB. Obtain help on the design options specific to the
Butterworth design method. Design the filter with the "MatchExactly'
option set to 'Passband'.

D = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.25,0.5,40);
% Query design-method-specific options
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help(D,'butter')
% Match passband exactly
H = design(D,'butter','MatchExactly','passband');

If you have the DSP System Toolbox software, you can specify the P-th
norm scaling on the second-order sections. Use L-infinity norm scaling
in the time domain.

H = design(D,'butter','MatchExactly','passband','SOSScaleNorm','linf');

If you have the DSP System Toolbox software, you can create a filter
System object.

Hs = design(D,'SystemObject',true);

See Also designmethods | designopts
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Purpose Methods available for designing filter from specification object

Syntax M = designmethods(D)
M = designmethods(D,'default')
M = designmethods(D,TYPE)
M = designmethods(D,'full')
Ms = designmethods(D,...,'SystemObject',sysobjflag)

Description M = designmethods(D) returns the available design methods for the
filter specification object, D, and the current value of the Specification
property.

M = designmethods(D,'default') returns the default design method
for the filter specification object D and the current value of the
Specification property.

M = designmethods(D,TYPE) returns either the TYPE design methods
that apply to D. TYPE can be either 'FIR' or 'IIR'.

M = designmethods(D,'full') returns the full name for each of
the available design methods. For example, designmethods with the
'full' argument returns Butterworth for the butter method.

Ms = designmethods(D,...,'SystemObject',sysobjflag) returns
the available design methods for designing filter System objects when
sysobjflag is true. To use System objects, you must have the DSP
System Toolbox product installed. When sysobjflag is false, the
function checks methods for creating dfilt and mfilt objects, as
described previously. Design methods and design options for filter
System objects are not necessarily the same as those for dfilt and
mfilt objects.

Examples Construct a lowpass filter specification object and determine the valid
design methods. Obtain detailed command line help on the Chebyshev
type I design method.

D =fdesign.lowpass('Fp,Fst,Ap,Ast',500,600,0.5,60,1e4);
M = designmethods(D)
help(D,M{2})
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The last line of the example is equivalent to help(D,'cheby1').

If you have DSP System Toolbox software installed, use the
'SystemObject',sysobjflag syntax to return design methods for a
filter System object:

Ms = designmethods(D,'SystemObject',true);

See Also design | designopts | fdesign
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Purpose Valid input arguments and values for specification object and method

Syntax OPTS = designopts(D,METHOD)

Description OPTS = designopts(D,METHOD) returns a structure array with the
default design parameters used by the design method METHOD. METHOD
must be one of the strings returned by designmethods.

Use help(D,METHOD) to get a description of the design parameters.

If you have DSP System Toolbox software installed, OPTS has the
SystemObject property if at least one of the structures available for
that design method is supported by System objects. However, not all
structures for that design method are supported by System objects.

Examples Create a lowpass filter with a numerator and denominator order of
10 and a 3-dB frequency of 0.2π radians/sample. Obtain the default
design parameters for a Butterworth design, and test whether the filter
structure is a direct-form II biquad.

D = fdesign.lowpass('Nb,Na,F3dB',10,10,0.2);
OPTS = designopts(D,'butter');
if (OPTS.FilterStructure == 'df2sos')

fprintf('The default filter structure is Direct-Form II\n');
fprintf('with second-order sections.\n');

end

If you have DSP System Toolbox software installed, OPTS has the
SystemObject property.

See Also design | designmethods | fdesign | validstructures
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Purpose Discrete-time filter

Syntax Hd = dfilt.structure(input1,...)
Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),

...]

Description Hd = dfilt.structure(input1,...) returns a discrete-time filter, Hd,
of type structure. Each structure takes one or more inputs. If you
specify a dfilt.structure with no inputs, a default filter is created.

Note You must use a structure with dfilt.

Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]
returns a vector containing dfilt filters.

Structures

Available structures for the dfilt object are shown below. The target
block for the block method depends on the filter structure. Depending
on the target block, the DSP System Toolbox software may be required.

dfilt.structure Description

Coefficient Mapping
Support in
realizemdl

Target Filter Block
for block Method

dfilt.delay Delay Not supported DelayRequires DSP
System Toolbox

dfilt.df1 Direct-form I Supported Discrete Filter

dfilt.df1sos Direct-form I,
second-order sections

Supported Discrete
FilterRequires DSP
System Toolbox

dfilt.df1t Direct-form I
transposed

Supported Discrete Filter
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dfilt.structure Description

Coefficient Mapping
Support in
realizemdl

Target Filter Block
for block Method

dfilt.df1tsos Direct-form
I transposed,
second-order sections

Supported Biquad Filter
Requires DSP System
Toolbox

dfilt.df2 Direct-form II Supported Discrete Filter

dfilt.df2sos Direct-form II,
second-order sections

Supported Discrete Filter

dfilt.df2t Direct-form II
transposed

Supported Discrete Filter

dfilt.df2tsos Direct-form
II transposed,
second-order sections

Supported Biquad Filter
Requires DSP System
Toolbox

dfilt.dffir Direct-form FIR Supported Discrete FIR
Filter

dfilt.dffirt Direct-form FIR
transposed

Supported Discrete FIR
Filter

dfilt.dfsymfir Direct-form
symmetric FIR

Supported Discrete FIR
Filter

dfilt.dfasymfir Direct-form
antisymmetric FIR

Supported Discrete FIR
Filter

dfilt.fftfir Overlap-add FIR Not supported Overlap-Add FFT
FilterRequires DSP
System Toolbox

dfilt.latticeallpassLattice allpass Supported Not supported

dfilt.latticear Lattice autoregressive
(AR)

Supported Allpole
FilterRequires DSP
System Toolbox
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dfilt.structure Description

Coefficient Mapping
Support in
realizemdl

Target Filter Block
for block Method

dfilt.latticearmaLattice autoregressive
moving- average
(ARMA)

Supported Not supported

dfilt.latticemamaxLattice
moving-average (MA)
for maximum phase

Supported Not supported

dfilt.latticemaminLattice
moving-average (MA)
for minimum phase

Supported Discrete FIR
Filter

dfilt.statespaceState-space Supported. Not supported

dfilt.scalar Scalar gain object Supported GainRequires DSP
System Toolbox

dfilt.cascade Filters arranged in
series

Supported Target blocks depend
on filter structures in
the series

dfilt.parallel Filters arranged in
parallel

Supported Target blocks depend
on filter structures in
the parallel system

For more information on each structure, use the syntax help
diflt.structure at the MATLAB prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dfilt
object without having to specify the filter parameters again. You can
apply these methods directly on the variable you assigned to your dfilt
object.

For example, if you create a dfilt object, Hd, you can check whether
it has linear phase with islinphase(Hd), view its frequency response
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plot with fvtool(Hd), or obtain its frequency response values with
h=freqz(Hd). You can use all of the methods below in this way.

Note If your variable is a 1-D array of dfilt filters, the method is
applied to each object in the array. Only freqz, grpdelay, impz, is*,
order, and stepzmethods can be applied to arrays. The zplanemethod
can be applied to an array only if it is used without outputs.

Some of the methods listed below have the same name as Signal
Processing Toolbox functions and they behave similarly. This is called
overloading of functions.

Available methods are:

Method Description

addstage Adds a stage to a cascade or parallel object,
where a stage is a separate, modular filter. See
dfilt.cascade and dfilt.parallel.

block block(Hd) creates a Simulink filter block of the
dfilt object. The target filter block depends on
the filter structure. You must have Simulink to
use this method. Additionally, the DSP System
Toolbox may be required depending on the filter
structure. See “Structures” on page 1-146 for a
mapping between the target blocks and filter
structures.

The block method can specify these
properties/values:

'MapCoeffstoPorts' indicates whether to
map the filter coefficients to constant blocks
connected to the generated block. Default
value is 'off'. Setting 'MapCoeffstoPorts'
to 'on' turns on the mapping and enables
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Method Description

the 'CoeffNames' property, which defines the
constant block parameter names. 'CoeffNames'
is a cell array of strings. Default values are
{'Num'} for Direct form FIR filters, {'K'} for
lattice filters, {'Num','Den'} for IIR filters, and
{Num','Den','g'} for biquad filters. Variables,
defined by 'CoeffNames', are created in the
MATLAB workspace and have the same data
type as the filter’s 'Arithmetic' property.
Any existing variable with the same name
is overwritten. Note that you can use either
'Link2Obj' or 'MapCoeffstoPorts', but not
both simultaneously.

'InputProcessing' specifies sample-based,
'elementsaschannels', frame-based,
'columnsaschannels', processing, or
'inherited'. The default is frame-based
processing. If you do not have the DSP
System Toolbox software, explicitly set
the 'InputProcessing' property to
'elementsaschannels' to avoid a runtime
error. Setting 'InputProcessing' to
'inherited' targets the Digital Filter block
regardless of structure.

cascade Returns the series combination of two dfilt
objects. See dfilt.cascade.

coeffs Returns the filter coefficients in a structure
containing fields that use the same property
names as those in the original dfilt.

convert Converts a dfilt object from one filter structure
to another filter structure.

1-150



dfilt

Method Description

fcfwrite Writes a filter coefficient ASCII file. The file
can contain a single filter or a vector of objects.
If the DSP System Toolbox product is installed,
the file can contain multirate filters (mfilt) or
adaptive filters (adaptfilt). Default filename
is untitled.fcf.

fcfwrite(Hd,filename) writes to a disk
file named filename in the current working
directory. The .fcf extension is added
automatically.

fcfwrite(...,fmt) writes the coefficients in
the format fmt, where valid fmt strings are:

'hex' for hexadecimal

'dec' for decimal

'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients used
when filtering with a dfilt.fftfir.

filter Performs filtering using the dfilt object.

y = filter(Hd,x) filters x using the Hd filter
and returns the filtered data in y. See “Using
Filter States” on page 1-158 for information on
using initial conditions. If x is a matrix, each
column is filtered as an independent channel. If
x is a multidimensional array, filter operates
on the first nonsingleton dimension.

y = filter(Hd,x,dim) operates along the
dimension dim. If x is a vector or matrix and
dim is 1, every column of x is a channel. If dim is
2, every row is a channel.
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Method Description

firtype Returns the type (1-4) of a linear phase FIR
filter.

freqz Plots the frequency response in fvtool. Note
that unlike the freqz function, this dfilt freqz
method has a default length of 8192.

grpdelay Plots the group delay in fvtool.

impz Plots the impulse response in fvtool.

impzlength Returns the length of the impulse response.

info Displays brief dfilt information, such as
filter structure, length, stability, linear phase,
and, when appropriate, lattice and ladder
length. To display detailed information about
the design method, options, etc, use info(Hd,
'long'). The default display is 'short'. For
multistage filters (cascade and parallel),
use info(Hd.Stage(x)), where x is the stage
number, to see information about that stage.

isallpass Returns a logical 1 (i.e., true) if the dfilt object
in an allpass filter or a logical 0 (i.e., false) if
it is not.

iscascade Returns a logical 1 if the dfilt object is
cascaded or a logical 0 if it is not.

isfir Returns a logical 1 if the dfilt object has finite
impulse response (FIR) or a logical 0 if it does
not.

islinphase Returns a logical 1 if the dfilt object is linear
phase or a logical 0 if it is not.

ismaxphase Returns a logical 1 if the dfilt object is
maximum-phase or a logical 0 if it is not.
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Method Description

isminphase Returns a logical 1 if the dfilt object is
minimum-phase or a logical 0 if it is not.

isparallel Returns a logical 1 if the dfilt object has
parallel stages or a logical 0 if it does not.

isreal Returns a logical 1 if the dfilt object has
real-valued coefficients or a logical 0 if it does
not.

isscalar Returns a logical 1 if the dfilt object is a scalar
or a logical 0 if it is not scalar.

issos Returns a logical 1 if the dfilt object has
second-order sections or a logical 0 if it does not.

isstable Returns a logical 1 if the dfilt object is stable
or a logical 0 if it are not.

nsections Returns the number of sections in a second-order
sections filter. If a multistage filter contains
stages with multiple sections, using nsections
returns the total number of sections in all the
stages (a stage with a single section returns 1).

nstages Returns the number of stages of the filter, where
a stage is a separate, modular filter.

nstates Returns the number of states for an object.

order Returns the filter order. If Hd is a single-stage
filter, the order is given by the number of delays
needed for a minimum realization of the filter.
If Hd has multiple stages, the order is given by
the number of delays needed for a minimum
realization of the overall filter.

parallel Returns the parallel combination of two dfilt
filters. See dfilt.parallel.

phasez Plots the phase response in fvtool.
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Method Description

realizemdl (Available only with Simulink software.)

realizemdl(Hd) creates a Simulink model
containing a subsystem block realization of your
dfilt.

realizemdl(Hd,p1,v1,p2,v2,...) creates the
block using the properties p1, p2,... and values
v1, v2,.. specified.

The following properties are available:

'Blockname' specifies the name of the block.
The default value is 'Filter'.

'Destination' specifies whether to add the
block to a current Simulink model, create a
new model, or place the block in an existing
subsystem in your model. Valid values are
'current', 'new', or the name of an existing
subsystem in your model. Default value is
'current'.

'OverwriteBlock' specifies whether to
overwrite an existing block that was created by
realizemdl or create a new block. Valid values
are 'on' and 'off' and the default is 'off'.
Note that only blocks created by realizemdl
are overwritten.

The following properties optimize the
block structure. Specifying 'on' turns the
optimization on and 'off' creates the block
without optimization. The default for each of
the following is 'on'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks
with a direct connection.
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Method Description

'OptimizeNegOnes' replaces negative
unity-gain blocks with a sign change at the
nearest summation block.

'OptimizeDelayChains' replaces cascaded
chains of delay block with a single integer delay
block set to the appropriate delay.

removestage Removes a stage from a cascade or
parallel dfilt. See dfilt.cascade and
dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt.
See dfilt.cascade and dfilt.parallel.

sos Converts the dfilt to a second-order sections
dfilt. If Hd has a single section, the returned
filter has the same class.

sos(Hd,flag) specifies the ordering of the
second-order sections. If flag='UP', the first
row contains the poles closest to the origin, and
the last row contains the poles closest to the
unit circle. If flag='down', the sections are
ordered in the opposite direction. The zeros are
always paired with the poles closest to them.

sos(Hd,flag,scale) specifies the scaling of
the gain and the numerator coefficients of all
second-order sections. scale can be 'none',
'inf' (infinity-norm) or 'two' (2-norm).
Using infinity-norm scaling with up ordering
minimizes the probability of overflow in the
realization. Using 2-norm scaling with down
ordering minimizes the peak roundoff noise.
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Method Description

ss Converts the dfilt to state-space. To see the
separate A,B,C,D matrices for the state-space
model, use [A,B,C,D]=ss(Hd).

stepz Plots the step response in fvtool.

stepz(Hd,n) computes the first n samples of
the step response.

stepz(Hd,n,Fs) separates the time samples by
T = 1/Fs, where Fs is assumed to be in Hz.

sysobj Converts the dfilt to a filter System object.
See the reference page for a list of supported
objects. To use this method, you must have DSP
System Toolbox software installed.

tf Converts the dfilt to a transfer function.

zerophase Plots the zero-phase response in fvtool.

zpk Converts the dfilt to zeros-pole-gain form.

zplane Plots a pole-zero plot in fvtool.

For more information on each method, use the syntax help
diflt/method at the MATLAB prompt.

Viewing Properties

As with any object, you can use get to view a dfilt properties. To
see a specific property, use

get(Hd,'property')

To see all properties for an object, use

get(Hd)
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Changing Properties

To set specific properties, use

set(Hd,'property1',value,'property2',value,...)

Note that you must use single quotation marks around the property
name.

Alternatively, you can get or set a property value with Object.property:

b = [0.05 0.9 0.05];
Hd = dfilt.dffir(b);
% Lowpass direct-form I FIR filter
Hd.arithmetic % get arithmetic property
% returns double
Hd.arithmetic = 'single';
% Set arithmetic property to single precision

Copying an Object

To create a copy of an object, use the copy method.

H2 = copy(Hd)

Note Using the syntax H2 = Hd copies only the object handle and does
not create a new object.

Converting Between Filter Structures

To change the filter structure of a dfilt object Hd, use

Hd2=convert(Hd,'structure_string');

where structure_string is any valid structure name in single
quotation marks. If Hd is a cascade or parallel structure, each of its
stages is converted to the new structure.
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Using Filter States

Two properties control the filter states:

• states — stores the current states of the filter. Before the filter
is applied, the states correspond to the initial conditions and after
the filter is applied, the states correspond to the final conditions.
For df1, df1t, df1sos and df1tsos structures, states returns a
filtstate object.

• PersistentMemory— controls whether filter states are saved. The
default value is 'false', which causes the initial conditions to
be reset to zero before filtering and turns off the display of states
information. Setting PersistentMemory to 'true' allows the filter to
use your initial conditions or to reuse the final conditions of a previous
filtering operation as the initial conditions of the next filtering
operation. It also displays information about the filter states.

Note If you set states and want to use them for filtering, you must
set PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
Hd = dfilt.df1(b,a)

If a dfilt’s numerator values do not fit on a single line, a description
of the vector is displayed. To see the specific numerator values for this
example, use

get(Hd,'numerator')

or alternatively

Hd.numerator

Refer to the reference pages for each structure for more examples.
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See Also dfilt.cascade | dfilt.df1 | dfilt.df1t | dfilt.df2 | dfilt.df2t
| dfilt.dfasymfir | dfilt.dffir | dfilt.dffirt | dfilt.dfsymfir
| dfilt.latticeallpass | dfilt.latticear | dfilt.latticearma
| dfilt.latticemamax | dfilt.latticemamin | dfilt.parallel |
dfilt.statespace | filter | freqz | grpdelay | impz | step | tf
| zpk | zplane
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Purpose Cascade of discrete-time filters

Syntax Hd = dfilt.cascade(Hd1,Hd2,...)

Description Hd = dfilt.cascade(Hd1,Hd2,...) returns a discrete-time filter, Hd,
of type cascade, which is a serial interconnection of two or more dfilt
filters, Hd1, Hd2, etc. Each filter in a cascade is a separate stage.

To add a filter (Hd1) to the end of an existing cascade (Hd), use

addstage(Hd,Hd1)

and to reorder the filters in a cascade, use the stage indices to indicate
the desired ordering, such as.

Hd.stage = Hd.stage([1,3,2]);

You can also use the nondot notation format for calling a cascade:

cascade(Hd1,Hd2,...)

Examples Cascade a lowpass filter and a highpass filter to produce a bandpass
filter:

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
H1=dfilt.df2t(b1,a1);
H2=dfilt.df2t(b2,a2);
Hcas=dfilt.cascade(H1,H2) % Bandpass-passband .4-.6

To view details of the first stage, use

info(Hcas.Stage(1))
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To view the states of a stage, use

Hcas.stage(1).states

You can display states for individual stages only.

See Also dfilt | dfilt.parallel | dfilt.scalar
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Purpose Delay filter

Syntax Hd = dfilt.delay
Hd = dfilt.delay(latency)

Description Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay,
which adds a single delay to any signal filtered with Hd. The filtered
signal has its values shifted by one sample.

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type
delay, which adds the number of delay units specified in latency to
any signal filtered with Hd. The filtered signal has its values shifted by
the latency number of samples. The values that appear before the
shifted signal are the filter states.

Examples Create a delay filter with a latency of 4 and filter a simple signal to
view the impact of applying a delay.

h = dfilt.delay(4)
h =

FilterStructure: 'Delay'
Latency: 4

PersistentMemory: false

sig = 1:7 % Create some simple signal data
sig =

1 2 3 4 5 6 7

states = h.states % Filter states before filtering
states =

0
0
0
0

filter(h,sig) % Filter using the delay filter
ans =
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0 0 0 0 1 2 3

states=h.states % Filter states after filtering
states =

4
5
6
7

See Also dfilt
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Purpose Discrete-time, direct-form I filter

Syntax Hd = dfilt.df1(b,a)
Hd = dfilt.df1

Description Hd = dfilt.df1(b,a) returns a discrete-time, direct-form I filter, Hd,
with numerator coefficients b and denominator coefficients a. The filter
states for this object are stored in a filtstates object.

Hd = dfilt.df1 returns a default, discrete-time, direct-form I filter,
Hd, with b=1 and a=1. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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Image of direct form one filter diagram

To display the filter states, use this code to access the filtstates
object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector is
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Examples Create a direct-form I discrete-time filter with coefficients from a
fourth-order lowpass Butterworth design

[b,a] = butter(4,.5);
Hd = dfilt.df1(b,a)

See Also dfilt | dfilt.df1t | dfilt.df2 | dfilt.df2t
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Purpose Discrete-time, second-order section, direct-form I filter

Syntax Hd = dfilt.df1sos(s)
Hd = dfilt.df1sos(b1,a1,b2,a2,...)
Hd = dfilt.df1sos(...,g)
Hd = dfilt.df1sos

Description Hd = dfilt.df1sos(s) returns a discrete-time, second-order section,
direct-form I filter, Hd, with coefficients given in the s matrix. The filter
states for this object are stored in a filtstates object.

Hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form I filter, Hd, with coefficients for the
first section given in the b1 and a1 vectors, for the second section given
in the b2 and a2 vectors, etc.

Hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g
are the gains for each section. The maximum length of g is the number
of sections plus one. If g is not specified, all gains default to one.

Hd = dfilt.df1sos returns a default, discrete-time, second-order
section, direct-form I filter, Hd. This filter passes the input through
to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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To display the filter states, use this code to access the filtstates
object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector is
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For filters with more than one section, each section is a separate column
in the matrix.

Examples Specify a second-order sections, direct-form I discrete-time filter with
coefficients from a sixth order, lowpass, elliptical filter using the
following code. The resulting filter has three sections.

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df1sos(s,g)

See Also dfilt | dfilt.df1tsos | dfilt.df2sos | dfilt.df2tsos
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Purpose Discrete-time, direct-form I transposed filter

Syntax Hd = dfilt.df1t(b,a)
Hd = dfilt.df1t

Description Hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I
transposed filter, Hd, with numerator coefficients b and denominator
coefficients a. The filter states for this object are stored in a filtstates
object.

Hd = dfilt.df1t returns a default, discrete-time, direct-form I
transposed filter, Hd, with b=1 and a=1. This filter passes the input
through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

To display the filter states, use this code to access the filtstates
object.
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Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector of states is:
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Alternatively, you can access the states in the filtstates object:

b = [0.05 0.9 0.05];
Hd = dfilt.df1t(b,1);
Hd.States
% Returns
% Numerator: [2x1 double]
% Denominator: [0x1 double]
Hd.States.Numerator(1)=1; %Set zb(1) equal to 1.

Examples Create a direct-form I transposed discrete-time filter with coefficients
from a fourth-order lowpass Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df1t(b,a)

See Also dfilt | dfilt.df1 | dfilt.df2 | dfilt.df2t
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Purpose Discrete-time, second-order section, direct-form I transposed filter

Syntax Hd = dfilt.df1tsos(s)
Hd = dfilt.df1tsos(b1,a1,b2,a2,...)
Hd = dfilt.df1tsos(...,g)
Hd = dfilt.df1tsos

Description Hd = dfilt.df1tsos(s) returns a discrete-time, second-order section,
direct-form I, transposed filter, Hd, with coefficients given in the s
matrix. The filter states for this object are stored in a filtstates
object.

Hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form I, tranposed filter, Hd, with coefficients
for the first section given in the b1 and a1 vectors, for the second section
given in the b2 and a2 vectors, etc.

Hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements
of g are the gains for each section. The maximum length of g is the
number of sections plus one. If g is not specified, all gains default to one.

Hd = dfilt.df1tsos returns a default, discrete-time, second-order
section, direct-form I, transposed filter, Hd. This filter passes the input
through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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To display the filter states, use this code to access the filtstates
object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The matrix is

zb zb
zb zb
za za
za za

1 1 2 1
1 2 2 2
1 1 2 1
1 2 2 2

( ) ( )
( ) ( )
( ) ( )
( ) ( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟
⎟

Examples Specify a second-order sections, direct-form I, transposed discrete-time
filter with coefficients from a sixth order, lowpass, elliptical filter using
the following code:
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[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df1tsos(s,g)

See Also dfilt | dfilt.df1sos | dfilt.df2sos | dfilt.df2tsos
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Purpose Discrete-time, direct-form II filter

Syntax Hd = dfilt.df2(b,a)
Hd = dfilt.df2

Description Hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter, Hd,
with numerator coefficients b and denominator coefficients a.

Hd = dfilt.df2 returns a default, discrete-time, direct-form II filter,
Hd, with b=1 and a=1. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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The resulting filter states column vector is
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Examples Create a direct-form II discrete-time filter with coefficients from a
fourth-order lowpass Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df2(b,a)
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See Also dfilt | dfilt.df1 | dfilt.df1t | dfilt.df2t
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Purpose Discrete-time, second-order section, direct-form II filter

Syntax Hd = dfilt.df2sos(s)
Hd = dfilt.df2sos(b1,a1,b2,a2,...)
Hd = dfilt.df2sos(...,g)
Hd = dfilt.df2sos

Description Hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form II object, Hd, with coefficients for the
first section given in the b1 and a1 vectors, for the second section given
in the b2 and a2 vectors, etc.

Hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g
are the gains for each section. The maximum length of g is the number
of sections plus one. If g is not specified, all gains default to one.

Hd = dfilt.df2sos returns a default, discrete-time, second-order
section, direct-form II filter, Hd. This filter passes the input through
to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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The resulting filter states column vector is
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For filters with more than one section, each section is a separate column
in the vector.

1-179



dfilt.df2sos

Examples Specify a second-order sections, direct-form II discrete-time filter
with coefficients from a sixth order, lowpass, elliptical filter using the
following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2sos(s,g)

See Also dfilt | dfilt.df1sos | dfilt.df1tsos | dfilt.df2tsos
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Purpose Discrete-time, direct-form II transposed filter

Syntax Hd = dfilt.df2t(b,a)
Hd = dfilt.df2t

Description Hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II
transposed filter, Hd, with numerator coefficients b and denominator
coefficients a.

Hd = dfilt.df2t returns a default, discrete-time, direct-form II
transposed filter, Hd, with b=1 and a=1. This filter passes the input
through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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The filter states of dfilt.df2t object can be extracted as a column
vector with:

b =[1 2];
a =[1 -0.9];
Hd = dfilt.df2t(b,a);
FiltStates = double(Hd.States);

The resulting filter states column vector is
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Examples Create a direct-form II transposed discrete-time filter with coefficients
from a 4–th order lowpass Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df2t(b,a);

See Also dfilt | dfilt.df1 | dfilt.df1t | dfilt.df2

1-182



dfilt.df2tsos

Purpose Discrete-time, second-order section, direct-form II transposed filter

Syntax Hd = dfilt.df2sos(s)
Hd = dfilt.df2tsos(b1,a1,b2,a2,...)
Hd = dfilt.df2tsos(...,g)
Hd = dfilt.df2tso

Description Hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II, transposed filter, Hd, with coefficients given in the s
matrix.

Hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form II, tranposed filter, Hd, with
coefficients for the first section given in the b1 and a1 vectors, for the
second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements
of g are the gains for each section. The maximum length of g is the
number of sections plus one. If g is not specified, all gains default to one.

Hd = dfilt.df2tso returns a default, discrete-time, second-order
section, direct-form II, transposed filter, Hd. This filter passes the input
through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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The resulting filter states column vector is
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Examples Specify a second-order sections, direct-form II, transposed discrete-time
filter with coefficients from a sixth order, lowpass, elliptical filter using
the following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2tsos(s,g)

See Also dfilt | dfilt.df1sos | dfilt.df1tsos | dfilt.df2sos
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Purpose Discrete-time, direct-form antisymmetric FIR filter

Syntax Hd = dfilt.dfasymfir(b)
Hd = dfilt.dfasymfir

Description Hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form,
antisymmetric FIR filter, Hd, with numerator coefficients b.

Hd = dfilt.dfasymfir returns a default, discrete-time, direct-form,
antisymmetric FIR filter, Hd, with b=1. This filter passes the input
through to the output unchanged.

Note Only the first half of vector b is used because the second half is
assumed to be antisymmetric. In the figure below for an odd number
of coefficients, b(3) = 0, b(4) = –b(2) and b(5) = –b(1), and in the next
figure for an even number of coefficients, b(4) = –b(3), b(5) = –b(2), and
b(6) = –b(1).
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The resulting filter states column vector for the odd number of
coefficients example above is
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Examples Odd Order

Create a Type 4 25th order highpass direct-form antisymmetric FIR
filter structure for a dfilt object, Hd, with the following code:

Num_coeffs = firpm(25,[0 .4 .5 1],[0 0 1 1],'h');
Hd = dfilt.dfasymfir(Num_coeffs);

Even Order

Create a 44th order lowpass direct-form antisymmetric FIR differentiator
filter structure for a dfilt object, Hd, with the following code:

Num_coeffs = firpm(44,[0 .3 .4 1],[0 .2 0 0],'differentiator');
Hd = dfilt.dfasymfir(Num_coeffs);

See Also dfilt | dfilt.dffir | dfilt.dffirt | dfilt.dfsymfir
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Purpose Discrete-time, direct-form, FIR filter

Syntax Hd = dfilt.dffir(b)
Hd = dfilt.dffir

Description Hd = dfilt.dffir(b) returns a discrete-time, direct-form finite
impulse response (FIR) filter, Hd, with numerator coefficients, b.

Hd = dfilt.dffir returns a default, discrete-time, direct-form FIR
filter, Hd, with b=1. This filter passes the input through to the output
unchanged.

The resulting filter states column vector is
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Examples Create a direct-form FIR discrete-time filter with coefficients from a
30th order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffir(b)

See Also dfilt | dfilt.dfasymfir | dfilt.dffirt | dfilt.dfsymfir
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Purpose Discrete-time, direct-form FIR transposed filter

Syntax Hd = dfilt.dffirt(b)
Hd = dfilt.dffirt

Description Hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR
transposed filter, Hd, with numerator coefficients b.

Hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR
transposed filter, Hd, with b=1. This filter passes the input through
to the output unchanged.

The resulting filter states column vector is
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Examples Create a direct-form FIR transposed discrete-time filter with coefficients
from a 30th order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffirt(b)

See Also dfilt | dfilt.dffir | dfilt.dfasymfir | dfilt.dfsymfir
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Purpose Discrete-time, direct-form symmetric FIR filter

Syntax Hd = dfilt.dfsymfir(b)
Hd = dfilt.dfsymfir

Description Hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form
symmetric FIR filter, Hd, with numerator coefficients b.

Hd = dfilt.dfsymfir returns a default, discrete-time, direct-form
symmetric FIR filter, Hd, with b=1. This filter passes the input through
to the output unchanged.

Note Only the first half of vector b is used because the second half is
assumed to be symmetric. In the figure below for an odd number of
coefficients, b(3) = 0, b(4) = b(2) and b(5) = b(1), and in the next figure for
an even number of coefficients, b(4) = b(3), b(5) = b(2), and b(6) = b(1).
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The resulting filter states column vector for the odd number of
coefficients example above is
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Examples Odd Order

Specify a fifth-order direct-form symmetric FIR filter structure for a
dfilt object, Hd, with the following code:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
Hd = dfilt.dfsymfir(b)

Even Order

Specify a fourth-order direct-form symmetric FIR filter structure for a
dfilt object, Hd, with the following code:

b = [-0.01 0.1 0.8 0.1 -0.01];
Hd = dfilt.dfsymfir(b)

See Also dfilt | dfilt.dfasymfir | dfilt.dffir | dfilt.dffirt
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Purpose Discrete-time, overlap-add, FIR filter

Syntax Hd = dfilt.fftfir(b,len)
Hd = dfilt.fftfir(b)
Hd = dfilt.fftfir

Description This object uses the overlap-add method of block FIR filtering, which is
very efficient for streaming data.

Hd = dfilt.fftfir(b,len) returns a discrete-time, FFT, FIR filter,
Hd, with numerator coefficients, b and block length, len. The block
length is the number of input points to use for each overlap-add
computation.

Hd = dfilt.fftfir(b) returns a discrete-time, FFT, FIR filter, Hd,
with numerator coefficients, b and block length, len=100.

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter,
Hd, with the numerator b=1 and block length, len=100. This filter
passes the input through to the output unchanged.

Note When you use a dfilt.fftfir object to filter data, the filter
always operates on a segment of the signal equal in length to an integer
multiple of the object’s block length, len. If the input signal length is
not equal to an integer multiple of the block length, the signal length
is truncated to the nearest integer satisfying this requirement. If
the PersistentMemory property is set to true, the next time you use
the filter object the remaining signal samples are prepended to the
subsequent input. The resulting number of FFT points = (filter length +
the block length - 1). The filter is most efficient if the number of FFT
points is a power of 2.

The fftfir uses an overlap-add block processing algorithm, which is
represented as follows,
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where len is the block length and M is the length of the numerator-1,
(length(b)-1), which is also the number of states. The output of each
convolution is a block that is longer than the input block by a tail of
(length(b)-1) samples. These tails overlap the next block and are
added to it. The states reported by dfilt.fftfir are the tails of the
final convolution.

Examples Create an FFT FIR discrete-time filter with coefficients from a 30th

order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.fftfir(b)

To view the frequency domain coefficients used in the filtering, use the
following command.

freq_coeffs = fftcoeffs(Hd);

See Also dfilt | dfilt.dffir | dfilt.dfasymfir | dfilt.dffirt |
dfilt.dfsymfir
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Purpose Discrete-time, lattice allpass filter

Syntax Hd = dfilt.latticeallpass(k)
Hd = dfilt.latticeallpass

Description Hd = dfilt.latticeallpass(k) returns a discrete-time, lattice
allpass filter, Hd, with lattice coefficients, k.

Hd = dfilt.latticeallpass returns a default, discrete-time, lattice
allpass filter, Hd, with k=[ ]. This filter passes the input through to the
output unchanged.

The resulting filter states column vector Hd.States is

z
z
( )
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2
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⎝
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⎞

⎠
⎟

Examples Form a third-order lattice allpass filter structure for a dfilt object, Hd,
using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticeallpass(k)
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See Also dfilt | dfilt.latticear | dfilt.latticearma |
dfilt.latticemamax | dfilt.latticemamin
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Purpose Discrete-time, lattice, autoregressive filter

Syntax Hd = dfilt.latticear(k)
Hd = dfilt.latticear

Description Hd = dfilt.latticear(k) returns a discrete-time, lattice
autoregressive filter, Hd, with lattice coefficients, k.

Hd = dfilt.latticear returns a default, discrete-time, lattice
autoregressive filter, Hd, with k=[ ]. This filter passes the input through
to the output unchanged.

The resulting filter states column vector is
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Examples Form a third-order lattice autoregressive filter structure for a dfilt
object, Hd, using the following lattice coefficients:
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k = [.66 .7 .44];
Hd = dfilt.latticear(k)

See Also dfilt | dfilt.latticeallpass | dfilt.latticearma |
dfilt.latticemamax | dfilt.latticemamin
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Purpose Discrete-time, lattice, autoregressive, moving-average filter

Syntax Hd = dfilt.latticearma(k,v)
Hd = dfilt.latticearma

Description Hd = dfilt.latticearma(k,v) returns a discrete-time, lattice
autoregressive, moving-average filter, Hd, with lattice coefficients, k
and ladder coefficients v.

Hd = dfilt.latticearma returns a default, discrete-time, lattice
autoregressive, moving-average filter, Hd, with k=[ ] and v=1. This filter
passes the input through to the output unchanged.

The resulting filter states column vector is
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Examples Form a third-order lattice autoregressive, moving-average filter
structure for a dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticearma(k)

See Also dfilt | dfilt.latticeallpass | dfilt.latticear |
dfilt.latticemamax | dfilt.latticemamin
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Purpose Discrete-time, lattice, moving-average filter

Syntax Hd = dfilt.latticemamax(k)
Hd = dfilt.latticemamax

Description Hd = dfilt.latticemamax(k) returns a discrete-time, lattice,
moving-average filter, Hd, with lattice coefficients k.

Note If the k coefficients define a maximum phase filter, the resulting
filter in this structure is maximum phase. If your coefficients do not
define a maximum phase filter, placing them in this structure does not
produce a maximum phase filter.

Hd = dfilt.latticemamax returns a default discrete-time, lattice,
moving-average filter, Hd, with k=[ ]. This filter passes the input
through to the output unchanged.
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The resulting filter states column vector is
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Examples Form a fourth-order lattice, moving-average, maximum phase filter
structure for a dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44 .33];
Hd = dfilt.latticemamax(k)

See Also dfilt | dfilt.latticeallpass | dfilt.latticear |
dfilt.latticearma | dfilt.latticemamin
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Purpose Discrete-time, lattice, moving-average filter

Syntax Hd = dfilt.latticemamin(k)
Hd = dfilt.latticemamin

Description Hd = dfilt.latticemamin(k) returns a discrete-time, lattice,
moving-average, minimum phase, filter, Hd, with lattice coefficients k.

Note If the k coefficients define a minimum phase filter, the resulting
filter in this structure is minimum phase. If your coefficients do not
define a minimum phase filter, placing them in this structure does not
produce a minimum phase filter.

Hd = dfilt.latticemamin returns a default discrete-time, lattice,
moving-average, minimum phase, filter, Hd, with k=[ ]. This filter
passes the input through to the output unchanged.
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The resulting filter states column vector is
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Examples Form a third-order lattice, moving-average, minimum phase, filter
structure for a dfilt object, Hd, using the following lattice coefficients.

k = [.66 .7 .44];
Hd = dfilt.latticemamin(k)

See Also dfilt | dfilt.latticeallpass | dfilt.latticear |
dfilt.latticearma | dfilt.latticemamax
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Purpose Discrete-time, parallel structure filter

Syntax Hd = dfilt.parallel(Hd1,Hd2,...)

Description Hd = dfilt.parallel(Hd1,Hd2,...) returns a discrete-time filter,
Hd, which is a structure of two or more dfilt filters, Hd1, Hd2, etc.
arranged in parallel. Each filter in a parallel structure is a separate
stage. You can display states for individual stages only. To view the
states of a stage use

Hd.stage(1).states

To append a filter (Hd1) onto an existing parallel filter (Hd), use

addstage(Hd,Hd1)

You can also use the nondot notation format for calling a parallel
structure.

parallel(Hd1,Hd2,...)

Examples Using a parallel structure, create a coupled-allpass decomposition of
a 7th order lowpass digital, elliptic filter with a normalized cutoff
frequency of 0.5, 1 decibel of peak-to-peak ripple and a minimum
stopband attenuation of 40 decibels.
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k1 = [-0.0154 0.9846 -0.3048 0.5601];
Hd1 = dfilt.latticeallpass(k1);
k2 = [-0.1294 0.8341 -0.4165];
Hd2 = dfilt.latticeallpass(k2);
Hpar = parallel(Hd1 ,Hd2);
gain = dfilt.scalar(0.5); % Normalize passband gain
Hcas = cascade(gain,Hpar);

For details on the stages of this filter, use

info(Hcas.Stage(1))

and

info(Hcas.Stage(2))

To view this filter, use

fvtool(Hcas)
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See Also dfilt | dfilt.cascade
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Purpose Discrete-time, scalar filter

Syntax Hd = dfilt.scalar(g)
Hd = dfilt.scalar

Description Hd = dfilt.scalar(g) returns a discrete-time, scalar filter, Hd, with
gain g, where g is a scalar.

Hd = dfilt.scalar returns a default, discrete-time scalar gain filter,
Hd, with gain 1.

Examples Create a direct-form I filter and a scalar object with a gain of 3 and
cascade them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hd_filt = dfilt.df1(b,a);
Hd_gain = dfilt.scalar(3);
Hd_cascade = cascade(Hd_gain,Hd_filt);
hfvt = fvtool(Hd_filt,Hd_gain,Hd_cascade);
legend(hfvt,'Original Filter','Gain','Cascaded Filter',...
'location','southwest');
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To view the stages of the cascaded filter, use

Hd.stage(1)

and

Hd.stage(2)

See Also dfilt | dfilt.cascade
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Purpose Discrete-time, state-space filter

Syntax Hd = dfilt.statespace(A,B,C,D)
Hd = dfilt.statespace

Description Hd = dfilt.statespace(A,B,C,D) returns a discrete-time state-space
filter, Hd, with rectangular arrays A, B, C, and D.

A, B, C, and D are from the matrix or state-space form of a filter’s
difference equations

x n Ax n Bu n
y n Cx n Du n

( ) ( ) ( )
( ) ( ) ( )
+ = +

= +
1

where x(n) is the vector states at time n, u(n) is the input at time
n, y is the output at time n, A is the state-transition matrix, B is
the input-to-state transmission matrix, C is the state-to-output
transmission matrix, and D is the input-to-ouput transmission matrix.
For single-channel systems, A is an m-by-m matrix where m is the order of
the filter, B is a column vector, C is a row vector, and D is a scalar.

Hd = dfilt.statespace returns a default, discrete-time state-space
filter, Hd, with A=[ ], B=[ ], C=[ ], and D=1. This filter passes the input
through to the output unchanged.
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The resulting filter states column vector has the same number of rows
as the number of rows of A or B.

Examples Create a second-order, state-space filter structure from a second-order,
lowpass Butterworth design.

[A,B,C,D] = butter(2,0.5);
Hd = dfilt.statespace(A,B,C,D)

See Also dfilt
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Purpose Discrete Fourier transform matrix

Syntax A = dftmtx(n)

Description A discrete Fourier transform matrix is a complex matrix of values
around the unit circle, whose matrix product with a vector computes
the discrete Fourier transform of the vector.

A = dftmtx(n) returns the n-by-n complex matrix A that, when
multiplied into a length n column vector x.

y = A*x

computes the discrete Fourier transform of x.

The inverse discrete Fourier transform matrix is

Ai = conj(dftmtx(n))/n

Examples In practice, the discrete Fourier transform is computed more efficiently
and uses less memory with an FFT algorithm

x = 1:256;
y1 = fft(x);

than by using the Fourier transform matrix.

n = length(x);
y2 = x*dftmtx(n);
norm(y1-y2)

Algorithms dftmtx takes the FFT of the identity matrix to generate the transform
matrix.

See Also convmtx | fft
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Purpose Permute input into digit-reversed order

Syntax y = digitrevorder(x,r)
[y,i] = digitrevorder(x,r)

Description digitrevorder is useful for pre-ordering a vector of filter coefficients
for use in frequency-domain filtering algorithms, in which the fft
and ifft transforms are computed without digit-reversed ordering
for improved run-time efficiency.

y = digitrevorder(x,r) returns the input data in digit-reversed
order in vector or matrix y. The digit-reversal is computed using the
number system base (radix base) r, which can be any integer from 2 to
36. The length of x must be an integer power of r. If x is a matrix, the
digit reversal occurs on the first dimension of x with size greater than
1. y is the same size as x.

[y,i] = digitrevorder(x,r) returns the digit-reversed vector or
matrix y and the digit-reversed indices i, such that y = x(i). Recall
that MATLAB matrices use 1-based indexing, so the first index of y
will be 1, not 0.

The following table shows the numbers 0 through 15, the corresponding
digits and the digit-reversed numbers using radix base-4. The
corresponding radix base-2 bits and bit-reversed indices are also shown.

Linear
Index

Base-4
Digits

Digit-
Reversed

Digit-
Reversed
Index

Base-2
Bits

Base-2
Reversed
(bitrevorder)

Bit-
Reversed
Index

0 00 00 0 0000 0000 0

1 01 10 4 0001 1000 8

2 02 20 8 0010 0100 4

3 03 30 12 0011 1100 12

4 10 01 1 0100 0010 2

5 11 11 5 0101 1010 10
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Linear
Index

Base-4
Digits

Digit-
Reversed

Digit-
Reversed
Index

Base-2
Bits

Base-2
Reversed
(bitrevorder)

Bit-
Reversed
Index

6 12 21 9 0110 0110 6

7 13 31 13 0111 1110 14

8 20 02 2 1000 0001 1

9 21 12 6 1001 1001 9

10 22 22 10 1010 0101 5

11 23 32 14 1011 1101 13

12 30 03 3 1100 0011 3

13 31 13 7 1101 1011 11

14 32 23 11 1110 0111 7

15 33 33 15 1111 1111 15

Examples Obtain the digit-reversed, radix base-3 ordered output of a vector
containing 9 values:

x=[0:8]'; % Create a column vector
[x,digitrevorder(x,3)]
% ans =
%
% 0 0
% 1 3
% 2 6
% 3 1
% 4 4
% 5 7
% 6 2
% 7 5
% 8 8

See Also bitrevorder | fft | ifft
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Purpose Dirichlet or periodic sinc function

Syntax y = diric(x,n)

Description y = diric(x,n) returns a vector or array y the same size as x. The
elements of y are the Dirichlet function of the elements of x. n must
be a positive integer.

The Dirichlet function, or periodic sinc function, is

D x

Nx
N x

x k k

xk N
( )

sin( / )
sin( / )

, , , , ,...

( ) ( )
=

≠ = ± ± ±

− =−

2
2

2 0 1 2 3

1 21



k k, , , , ,...= ± ± ±

⎧

⎨
⎪

⎩
⎪ 0 1 2 3

for any nonzero integer n. This function has period 2π for n odd and
period 4π for n even. Its peak value is 1, and its minimum value is -1 for
n even. The magnitude of this function is (1/n) times the magnitude of
the discrete-time Fourier transform of the n-point rectangular window.

Diagnostics If n is not a positive integer, diric gives the following error message:

Requires n to be a positive integer.

See Also cos | gauspuls | pulstran | rectpuls | sawtooth | sin | sinc |
square | tripuls
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Purpose Decrease sampling rate by integer factor

Syntax y = downsample(x,n)
y = downsample(x,n,phase)

Description y = downsample(x,n) decreases the sampling rate of x by keeping
every n-th sample starting with the first sample. x can be a vector or a
matrix. If x is a matrix, each column is considered a separate sequence.

y = downsample(x,n,phase) specifies the number of samples by which
to offset the downsampled sequence. phase must be an integer from
0 to n-1.

Examples Decrease the sampling rate of a sequence by 3:

x = [1 2 3 4 5 6 7 8 9 10];
y = downsample(x,3)
% y = 1 4 7 10

Decrease the sampling rate of the sequence by 3 and add a phase offset
of 2:

y = downsample(x,3,2)
% y = 3 6 9

Decrease the sampling rate of a matrix by 3:

x = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
y = downsample(x,3);

See Also decimate | interp | interp1 | resample | spline | upfirdn |
upsample

1-220



dpss

Purpose Discrete prolate spheroidal (Slepian) sequences

Syntax dps_seq = dpss(seq_length,time_halfbandwidth)
[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth)
[...] = dpss(seq_length,time_halfbandwidth,num_seq)
[...] = dpss(seq_length,time_halfbandwidth,'interp_method')
[...] = dpss(...,Ni)
[...] = dpss(...,'trace')

Description dps_seq = dpss(seq_length,time_halfbandwidth) returns the first
round(2*time_halfbandwidth) discrete prolate spheroidal (DPSS),
or Slepian sequences of length seq_length. dps_seq is a matrix
with seq_length rows and round(2*time_halfbandwidth) columns.
time_halfbandwidth must be strictly less than seq_length/2.

[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth)
returns the frequency-domain energy concentration ratios of the column
vectors in dps_seq. The ratios represent the amount of energy in the
passband [-W,W] to the total energy from [-Fs/2, Fs/2] where Fs is
the sampling frequency. lambda is a column vector equal in length to
the number of Slepian sequences.

[...] = dpss(seq_length,time_halfbandwidth,num_seq) returns
the first num_seq Slepian sequences with time half bandwidth product
time_halfbandwidth ordered by their energy concentration ratios. If
num_seq is a two-element vector, the returned Slepian sequences range
from num_seq(1) to num_seq(2).

[...] =
dpss(seq_length,time_halfbandwidth,'interp_method') uses
interpolation to compute the DPSSs from a user-created database of
DPSSs. Create the database of DPSSs with dpsssave and ensure that
the resulting dpss.mat file is in the MATLAB search path. Valid
options for 'interp_method' are 'spline' and 'linear'.
The interpolation method uses the Slepian sequences in the
database with time half bandwidth product time_halfbandwidth
and length closest to seq_length.
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[...] = dpss(...,Ni) interpolates from DPSSs of length Ni in the
database dpss.mat.

[...] = dpss(...,'trace') prints the method used to compute the
DPSSs in the command window. Possible methods include: direct,
spline interpolation, and linear interpolation.

Definitions Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the
following time-frequency concentration problem. For all finite-energy

sequences x n[ ] index limited to some set [ , ]N N N1 1 2+ , which sequence
maximizes the following ratio:

 = −

−

∫

∫
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where Fs is the sampling frequency and | | /W Fs< 2 . Accordingly,
this ratio determines which index-limited sequence has the largest
proportion of its energy in the band [-W,W]. For index-limited

sequences, the ratio must satisfy the inequality 0 1< < . The sequence
maximizing the ratio is the first discrete prolate spheroidal or Slepian
sequence. The second Slepian sequence maximizes the ratio and is
orthogonal to the first Slepian sequence. The third Slepian sequence
maximizes the ratio of integrals and is orthogonal to both the first
and second Slepian sequences. Continuing in this way, the Slepian
sequences form an orthogonal set of band limited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the
sequence and [-W,W] is the effective bandwidth of the sequence. In
constructing Slepian sequences, you choose the desired sequence length
and bandwidth 2W. Both the sequence length and bandwidth affect how
many Slepian sequences have concentration ratios near one. As a rule,
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there are 2NW-1 Slepian sequences with energy concentration ratios
approximately equal to one. Beyond 2NW-1 Slepian sequences, the
concentration ratios begin to approach zero. Common choices for the
time half bandwidth product are: 2.5, 3, 3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by
defining the time half bandwidth product as NW/Fs where Fs is the
sampling frequency.

Examples Construct a set of Slepian sequences:

seq_length = 512;
time_halfbandwidth = 2.5;
num_seq = 2*(2.5)-1;
%Obtain DPSSs
[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth,num_seq);
% Plot the Slepian sequences
plot(dps_seq);
title('Slepian Sequences N=512, NW=2.5');
axis([0 512 -0.15 0.15]);
legend('1st','2nd','3rd','4th');
%Concentration ratios in lambda:
%1.0000 0.9998 0.9962 0.9521
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References Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications. Cambridge: Cambridge University Press, 1993.

See Also dpssclear | dpssload | dpsssave | spectrum.mtm

How To • “Nonparametric Methods”
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Purpose Remove discrete prolate spheroidal sequences from database

Syntax dpssclear(n,nw)

Description dpssclear(n,nw) removes sequences with length n and time-bandwidth
product nw from the DPSS MAT-file database dpss.mat.

See Also dpss | dpssdir | dpssload | dpsssave
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Purpose Discrete prolate spheroidal sequences database directory

Syntax dpssdir
dpssdir(n)
dpssdir(nw,'nw')
dpssdir(n,nw)
index = dpssdir

Description dpssdir manages the database directory that contains the generated
DPSS samples in the DPSS MAT-file database dpss.mat. Create the
DPSS MAT-file database with dpsssave.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir(n) lists the sequences saved with length n.

dpssdir(nw,'nw') lists the sequences saved with time-bandwidth
product nw.

dpssdir(n,nw) lists the sequences saved with length n and
time-bandwidth product nw.

index = dpssdir is a structure array describing the DPSS database.
Pass n and nw options as for the no output case to get a filtered index.

See Also dpss | dpssclear | dpssload | dpsssave
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Purpose Load discrete prolate spheroidal sequences from database

Syntax [e,v] = dpssload(n,nw)

Description [e,v] = dpssload(n,nw) loads all sequences with length n and
time-bandwidth product nw in the columns of e and their corresponding
concentrations in vector v from the DPSS MAT-file database dpss.mat.
Create the dpss.mat file using dpssave.

See Also dpss | dpssclear | dpssdir | dpsssave
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Purpose Discrete prolate spheroidal or Slepian sequence database

Syntax dpsssave(time_halfbandwith,dps_seq,lambda)
status = dpsssave(time_halfbandwith,dps_seq,lambda)

Description dpsssave(time_halfbandwith,dps_seq,lambda) creates a
database of discrete prolate spheroidal (DPSS) or Slepian sequences
and saves the results in dpss.mat. The time half bandwidth
producttime_halfbandwith is a real-valued scalar determining
the frequency concentration of the Slepian sequences in dps_seq.
dps_seq is a NxK matrix of Slepian sequences where N is the length
of the sequences. lambda is a 1xK vector containing the frequency
concentration ratios of the Slepian sequences in dps_seq.

If the database dpss.mat exists, subsequent calls to dpsssave append
the Slepian sequences to the existing file.

status = dpsssave(time_halfbandwith,dps_seq,lambda) returns a
0 if the database operation was successful or a 1 if unsuccessful.

Definitions Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the
following time-frequency concentration problem. For all finite-energy

sequences x n[ ] index limited to some set [ , ]N N N1 1 2+ , which sequence
maximizes the following ratio:
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where Fs is the sampling frequency | | /W Fs< 2 . In other words, which
index-limited sequence has the largest proportion of its energy in the
band [-W,W]. For index-limited sequences, the ratio must satisfy the

inequality 0 1< < . The sequence maximizing the ratio is the first
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discrete prolate spheroidal or Slepian sequence. The second Slepian
sequence maximizes the ratio and is orthogonal to the first Slepian
sequence. The third Slepian sequence maximizes the ratio of integrals
and is orthogonal to both the first and second Slepian sequences.
Continuing in this way, the Slepian sequences form an orthogonal set
of band limited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the
sequence and [-W,W] is the effective bandwidth of the sequence. In
constructing Slepian sequences, you choose the desired sequence length
and bandwidth 2W. Both the sequence length and bandwidth affect how
many Slepian sequences have concentration ratios near one. As a rule,
there are 2NW-1 Slepian sequences with energy concentration ratios
approximately equal to one. Beyond 2NW-1 Slepian sequences, the
concentration ratios begin to approach zero. Common choices for the
time half bandwidth product are: 2.5, 3, 3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by
defining the time half bandwidth product as NW/Fs where Fs is the
sampling frequency.

Examples Create Slepian sequence database in current directory:

seq_length=512;
time_halfbandwidth=2.5;
num_seq=4;
[dps_seq,lambda]=dpss(seq_length,time_halfbandwidth);
% Create databased dpss.mat in current working directory
status=dpsssave(time_halfbandwidth,dps_seq,lambda);
% status should equal 1

References Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications. Cambridge: Cambridge University Press, 1993.

See Also dpss | dpssclear | dpssdir | dpssload
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Purpose DSP data parameter information

Syntax Hs = dspdata.dataobj(input1,...)

Description Hs = dspdata.dataobj(input1,...) returns a dspdata object Hs
of type dataobj. This object contains all the parameter information
needed for the specified type of dataobj. Each dataobj takes one or
more inputs, which are described on the individual reference pages. If
you do not specify any input values, the returned object has default
property values appropriate for the particular dataobj type.

Note You must use a dataobj with dspdata.

Data Objects

A data object (dataobj) for dspdata specifies the type of data stored in
the object. Available dataobj types for dspdata are shown below.

dspdata.dataobj Description

dspdata.msspectrum Mean-square spectrum data (power)

dspdata.psd Power spectral density data
(power/frequency)

dspdata.pseudospectrum Pseudospectrum data (power)

For more information on each dataobj type, use the syntax
help dspdata.dataobj at the MATLAB prompt or refer to its reference
page.

Methods

Methods provide ways of performing functions directly on your dspdata
object. You can apply these methods directly on the variable you
assigned to your dspdata object.
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Method Description

avgpower Note that this method applies only to
dspdata.psd objects.

avgpower(Hs) computes the average power in
a given frequency band. The technique uses
a rectangle approximation of the integral of
the Hs signal’s power spectral density (PSD).
If the signal is a matrix, the computation is
done on each column. The average power is
the total signal power and the SpectrumType
property determines whether the total
average power is contained in the one-sided
or two-sided spectrum. For aa one-sided
spectrum, the range is [0,pi] for even number
of frequency points and [0,pi) for odd. For a
two-sided spectrum the range is [0,2pi).

avgpower(Hs,freqrange) specifies the
frequency range over which to calculate the
average power. freqrange is a two-element
vector of the frequencies between which to
calculate. If a frequency value does not match
exactly the frequency in Hs, the next closest
value is used. Note that the first frequency
value in freqrange is included in the
calculation and the second value is excluded.

centerdc centerdc(Hs) or centerdc(Hs,true) shifts
the data and frequency values so that the DC
component is at the center of the spectrum. If
the SpectrumType property is 'onesided', it
is changed to 'twosided' and then the DC
component is centered.

centerdc(Hs,'false') shifts the data and
frequency values so that the DC component is
at the left edge of the spectrum.
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Method Description

findpeaks findpeaks(Hs) finds local maxima or peaks.
If no peaks are found, findpeaks returns an
empty vector.

[pks,frqs] = findpeaks(x) returns peaks
values (pks) and the frequencies (frqs) at
which the peaks occur.

findpeaks(x,'minpeakheight',mph)
returns only peaks greater than the minimum
peak height mph, where mph is a real scalar.
Default is -Inf.

findpeaks(x,'minpeakdistance',mpd)
returns only peaks separated by the minimum
frequency units distance mpd, which is a
positive integer. Setting the minimum peak
distance ignores smaller peaks that may occur
close to larger local peaks. Default is 1.

findpeaks(x,'threshold',th) returns only
peaks greater than their neighbors by at least
the threshold th, which is a real, scalar value
greater than or equal to 0. Default is 0.

findpeaks(x,'npeaks',np) returns a
maximum of np number of peaks. When np
peaks are found, the search stops. Default is
to return all peaks.

findpeaks(x,'sortstr',str) specifies
the sorting order, where str is 'ascend',
'descend' or 'none'. For 'ascend' , the
peaks are returned in order from smallest to
largest, and vice versa for 'descend'. For
'none', the peaks are returned in the order
in which they occur.
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Method Description

halfrange halfrange(Hs) converts the Hs spectrum to
a spectrum calculated over half the Nyquist
interval. All associated properties affected
by the new frequency range are adjusted
automatically. This method is used for
dspdata.pseudospectrum objects.

Note that the spectrum is assumed to be from
a real signal (that is, halfrange uses half the
data points regardless of whether the data is
symmetric).

normalizefreq normalizefreq(Hs) or
normalizefreq(Hs,true) normalizes the
frequency specifications in the Hs object to Fs
so the frequencies are between 0 and 1. It
also sets the NormalizedFrequency property
to true.

normalizefreq(Hs,false) converts the
frequencies to linear frequencies.

normalizefreq(Hs,false,Fs) sets a new
sampling frequency Fs. This can be used only
with false.

onesided onesided(Hs) converts the Hs spectrum to
a spectrum calculated over half the Nyquist
interval and containing the total signal power.
All associated properties affected by the new
frequency range are adjusted automatically.
This method is used for dspdata.psd and
dspdata.msspectrum objects.

Note that the spectrum is assumed to be from
a real signal (that is, onesided uses half the
data points regardless of whether the data is
symmetric).
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Method Description

plot Displays the data graphically in the current
figure window.

For a dspdata.psd object, it displays the
power spectral density in dB/Hz.

For a dspdata.msspectrum object, it displays
the mean–square in dB.

For a dspdata.pseudospectrum object, it
displays the pseudospectrum in dB.

sfdr This method applies only to
dspdata.msspectrum objects.

sfdr(Hs) computes the spurious-free dynamic
range (SFDR) in dB of a mean square
spectrum object Hs. SFDR is the usable range
before spurious noise interferes with the
signal.

[sfd,spur,frq] = sfdr(Hs) returns the
magnitude of the highest spur and the
frequency frq at which it occurs.

sfdr(Hs,'minspurlevel',msl) ignores
spurs below the minimum spur level msl,
which is a real scalar in dB.

sfdr(Hs,'minspurdistance',msd) includes
spurs only if they are separated by at least
the minimum spur distance msd, which is a
real, positive scalar in frequency units.
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Method Description

twosided twosided(Hs) converts the Hs spectrum
to a spectrum calculated over the whole
Nyquist interval. All associated properties
affected by the new frequency range are
adjusted automatically. This method is used
for dspdata.psd and dspdata.msspectrum
objects.

Note that if your data is nonuniformly
sampled, converting from onesided to
twosided may produce incorrect results.

wholerange wholerange(Hs) converts the Hs spectrum
to a spectrum calculated over the whole
Nyquist interval. All associated properties
affected by the new frequency range are
adjusted automatically. This method is used
for dspdata.pseudospectrum objects.

Note that if your data is nonuniformly
sampled, converting from half to wholerange
may produce incorrect results.

For more information on each method, use the syntax help
dspdata/method at the MATLAB prompt.

Plotting a dspdata Object

The plot method displays the dspdata object spectrum in a separate
figure window.

plot(Hs) % Plots an existing Hs object
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Modifying a dspdata Object

After you create a dspdata object, you can use any of the methods in
the table above to modify the object properties.

For example, to change the object from two-sided to one-sided, use

onesided(Hs)

The Hs object is modified.
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Examples See the msspectrum, psd, or pseudospectrum reference pages for
specific examples.

See Also dspdata.msspectrum | dspdata.psd | dspdata.pseudospectrum
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Purpose Mean-square (power) spectrum

Syntax Hmss = dspdata.msspectrum(Data)
Hmss = dspdata.msspectrum(Data,Frequencies)
Hmss = dspdata.msspectrum(...,'Fs',Fs)
Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType)
Hmss = dspdata.msspectrum(...,'CenterDC',flag)

Description The mean-squared spectrum (MSS) is intended for discrete spectra.
Unlike the power spectral density (PSD), the peaks in the MSS reflect
the power in the signal at a given frequency. The MSS of a signal is the
Fourier transform of that signal’s autocorrelation.

Hmss = dspdata.msspectrum(Data) uses the mean-square (power)
spectrum data contained in Data, which can be in the form of a vector or
a matrix, where each column is a separate set of data. Default values
for other properties of the object are as follows:
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Property Default Value Description

Name 'Mean-square
Spectrum'

Read-only string

Frequencies []

type double

Vector of frequencies at which
the spectrum is evaluated. The
range of this vector depends on the
SpectrumType value. For a one-sided
spectrum, the default range is [0, pi) or
[0, Fs/2) for odd length, and [0, pi] or [0,
Fs/2] for even length, if Fs is specified.
For a two-sided spectrum, it is [0, 2pi)
or [0, Fs).

The length of the Frequencies vector
must match the length of the columns
of Data.

If you do not specify Frequencies, a
default vector is created. If one-sided is
selected, then the whole number of FFT
points (nFFT) for this vector is assumed
to be even.

If onesided is selected and you specify
Frequencies, the last frequency point
is compared to the next-to-last point
and to pi (or Fs/2, if Fs is specified). If
the last point is closer to pi (or Fs/2)
than it is to the previous point, nFFT
is assumed to be even. If it is closer to
the previous point, nFFT is assumed to
be odd.

Fs 'Normalized' Sampling frequency, which is
'Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is
false Fs defaults to 1 Hz.
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Property Default Value Description

SpectrumType 'Onesided' Nyquist interval over which the spectral
density is calculated. Valid values are
'Onesided' and 'Twosided'. See the
onesided and twosided methods in
dspdata for information on changing
this property.

The interval for Onesided is [0 pi) or
[0 pi] depending on the number of FFT
points, and for Twosided the interval
is [0 2pi).

NormalizedFrequency true Whether the frequency is normalized
(true) or not (false). This property
is set automatically at construction
time based on Fs. If Fs is specified,
NormalizedFrequency is set to false.
See the normalizefreq method in
dspdata for information on changing
this property.

Hmss = dspdata.msspectrum(Data,Frequencies) uses the
mean–square spectrum data contained in Data and Frequencies
vectors.

Hmss = dspdata.msspectrum(...,'Fs',Fs) uses the sampling
frequency Fs. Specifying Fs uses a default set of linear frequencies (in
Hz) based on Fs and sets NormalizedFrequency to false.

Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType)
uses the SpectrumType string to specify the interval over which the
mean–square spectrum was calculated. For data that ranges from [0 pi)
or [0 pi], set the SpectrumType to onesided; for data that ranges from
[0 2pi), set the the SpectrumType to twosided.

Hmss = dspdata.msspectrum(...,'CenterDC',flag) uses the value
of flag to indicate whether the zero-frequency (DC) component is
centered. If flag is true, it indicates that the DC component is in
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the center of the two-sided spectrum. Set the flag to false if the DC
component is on the left edge of the spectrum.

Methods

Methods provide ways of performing functions directly on your
dspdata object without having to specify the parameters again. You
can apply a method directly on the variable you assigned to your
dspdata.msspectrum object. You can use the following methods with a
dspdata.msspectrum object.

• centerdc

• normalizefreq

• onesided

• plot

• sfdr

• twosided

For example, to normalize the frequency and set the
NormalizedFrequency parameter to true, use

Hmss = normalizefreq(Hs)

For detailed information on using the methods and plotting the
spectrum, see the dspdata reference page.

Examples In this example, we construct a mean-square spectrum data object from
the one-sided PSD estimate of a signal. The signal consists of two
sinusoids in additive noise.

Fs = 32e3;

t = 0:1/Fs:1-(1/Fs);

x = cos(2*pi*t*1.24e3)+cos(2*pi*t*10e3)+randn(size(t));

X = fft(x);

X=X(1:length(X)/2+1); %one-sided DFT

P = (abs(X)/length(x)).^2; % Compute the mean-square power

P(2:end-1)=2*P(2:end-1); % Factor of two for one-sided estimate
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% at all frequencies except zero and the Nyquist

Hmss=dspdata.msspectrum(P,'Fs',Fs,'spectrumtype','onesided');

plot(Hmss); % Plot the mean-square spectrum.

See Also dspdata.psd | dspdata.pseudospectrum | spectrum
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Purpose Power spectral density

Syntax Hpsd = dspdata.psd(Data)
Hpsd = dspdata.psd(Data,Frequencies)
Hpsd = dspdata.psd(...,'Fs',Fs)
Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType)
Hpsd = dspdata.psd(...,'CenterDC',flag)

Description The power spectral density (PSD) is intended for continuous spectra.
The integral of the PSD over a given frequency band computes the
average power in the signal over that frequency band. In contrast to
the mean-squared spectrum, the peaks in this spectra do not reflect
the power at a given frequency. See the avgpower method of dspdata
for more information.

A one-sided PSD contains the total power of the signal in the frequency
interval from DC to half of the Nyquist rate. A two-sided PSD contains
the total power in the frequency interval from DC to the Nyquist rate.

Hpsd = dspdata.psd(Data) uses the power spectral density data
contained in Data, which can be in the form of a vector or a matrix,
where each column is a separate set of data. Default values for other
properties of the object are shown below:

Property Default Value Description

Name 'Power Spectral
Density'

Read-only string

Frequencies []

type double

Vector of frequencies at which the
power spectral density is evaluated.
The range of this vector depends on the
SpectrumType value. For one-sided,
the default range is [0, pi) or [0, Fs/2)
for odd length, and [0, pi] or [0, Fs/2]
for even length, if Fs is specified. For
two-sided, it is [0, 2pi) or [0, Fs).
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Property Default Value Description

If you do not specify Frequencies, a
default vector is created. If one-sided is
selected, then the whole number of FFT
points (nFFT) for this vector is assumed
to be even.

If onesided is selected and you specify
Frequencies, the last frequency point
is compared to the next-to-last point
and to pi (or Fs/2, if Fs is specified). If
the last point is closer to pi (or Fs/2)
than it is to the previous point, nFFT
is assumed to be even. If it is closer to
the previous point, nFFT is assumed to
be odd.

The length of the Frequencies vector
must match the length of the columns
of Data.

Fs 'Normalized' Sampling frequency, which is
'Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is
false Fs defaults to 1.
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Property Default Value Description

SpectrumType 'Onesided' Nyquist interval over which the
power spectral density is calculated.
Valid values are 'Onesided' and
'Twosided'. A one-sided PSD contains
the total signal power in half the
Nyquist interval. See the onesided
and twosided methods in dspdata for
information on changing this property.

The range for half the Nyquist interval
is [0 pi) or [0 pi] depending on the
number of FFT points. For the whole
Nyquist interval, the range is [0 2pi).

NormalizedFrequency true Whether the frequency is normalized
(true) or not (false). This property
is set automatically at construction
time based on Fs. If Fs is specified,
NormalizedFrequency is set to false.
See the normalizefreq method in
dspdata for information on changing
this property.

Hpsd = dspdata.psd(Data,Frequencies) uses the power spectral
density estimation data contained in Data and Frequencies vectors.

Hpsd = dspdata.psd(...,'Fs',Fs) uses the sampling frequency Fs.
Specifying Fs uses a default set of linear frequencies (in Hz) based on
Fs and sets NormalizedFrequency to false.

Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType) uses the
SpectrumType string to specify the interval over which the power
spectral density was calculated. For data that ranges from [0 pi) or
[0 pi], set the SpectrumType to onesided; for data that ranges from
[0 2pi), set the SpectrumType to twosided.

Hpsd = dspdata.psd(...,'CenterDC',flag) uses the value of flag
to indicate whether the zero-frequency (DC) component is centered. If
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flag is true, it indicates that the DC component is in the center of
the two-sided spectrum. Set the flag to false if the DC component is
on the left edge of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata
object. You can apply a method directly on the variable you assigned
to your dspdata.psd object. You can use the following methods with a
dspdata.psd object.

• avgpower

• centerdc

• normalizefreq

• onesided

• plot

• twosided

For example, to normalize the frequency and set the
NormalizedFrequency parameter to true, use

Hpsd = normalizefreq(Hpsd)

For detailed information on using the methods and plotting the
spectrum, see the dspdata reference page.

Examples Resolving Signal Components

Estimate the power spectral density of a noisy sinusoidal signal with
two frequency components and then store the results in a PSD data
object and plot it.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3)+ cos(2*pi*t*10e3)+ randn(size(t));
nfft = 2^nextpow2(length(x));
Pxx = abs(fft(x,nfft)).^2/length(x)/Fs;
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% Create a single-sided spectrum
Hpsd = dspdata.psd(Pxx(1:length(Pxx)/2),'Fs',Fs);
plot(Hpsd);

% Create a double-sided spectrum
Hpsd = dspdata.psd(Pxx,'Fs',Fs,'SpectrumType','twosided');
plot(Hpsd)
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See Also dspdata.msspectrum | dspdata.pseudospectrum | spectrum
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Purpose Pseudospectrum dspdata object

Syntax Hps = dspdata.pseudospectrum(Data)
Hps = dspdata.pseudospectrum(Data,Frequencies)
Hps = dspdata.pseudospectrum(...,'Fs',Fs)
Hps = dspdata.pseudospectrum(...,'SpectrumRange',SpectrumRange)
Hps = dspdata.pseudospectrum(...,'CenterDC',flag)

Description A pseudospectrum is an indicator of the presence of sinusoidal
components in a signal.

Hps = dspdata.pseudospectrum(Data) uses the pseudospsectrum
data contained in Data, which can be in the form of a vector or a matrix,
where each column is a separate set of data. Default values for other
properties of the object are:
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Property Default Value Description

Name 'Pseudospectrum' Read-only string

Frequencies []

type double

Vector of frequencies at which the power
spectral density is evaluated. The range of
this vector depends on the SpectrumRange
value. For half, the default range is [0, pi)
or [0, Fs/2) for odd length, and [0, pi] or [0,
Fs/2] for even length, if Fs is specified. For
whole, it is [0, 2pi) or [0, Fs).

If you do not specify Frequencies, a
default vector is created. If half the
Nyquist range is selected, then the whole
number of FFT points (nFFT) for this
vector is assumed to be even.

If half the Nyquist range is selected
and you specify Frequencies, the last
frequency point is compared to the
next-to-last point and to pi (or Fs/2, if Fs
is specified). If the last point is closer to pi
(or Fs/2) than it is to the previous point,
nFFT is assumed to be even. If it is closer
to the previous point, nFFT is assumed to
be odd.

The length of the Frequencies vector
must match the length of the columns of
Data.

Fs 'Normalized' Sampling frequency, which is
'Normalized' if NormalizedFrequency is
true. If NormalizedFrequency is false
Fs defaults to 1.
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Property Default Value Description

SpectrumRange 'Half' Nyquist interval over which the
pseudospectrum is calculated. Valid
values are 'Half' and 'Whole'. See the
half and whole methods in dspdata for
information on changing this property.

The interval for Half is [0 pi) or [0 pi]
depending on the number of FFT points,
and for Whole the interval is [0 2pi).

NormalizedFrequency true Whether the frequency is normalized
(true) or not (false). This property
is set automatically at construction
time based on Fs. If Fs is specified,
NormalizedFrequency is set to false. See
the normalizefreq method in dspdata for
information on changing this property.

Hps = dspdata.pseudospectrum(Data,Frequencies) uses the
pseudospectrum estimation data contained in the Data and
Frequencies vectors.

Hps = dspdata.pseudospectrum(...,'Fs',Fs) uses the sampling
frequency Fs. Specifying Fs uses a default set of linear frequencies (in
Hz) based on Fs and sets NormalizedFrequency to false.

Hps = dspdata.pseudospectrum(...,'SpectrumRange',SpectrumRange)
uses the SpectrumRange string to specify the interval over which the
pseudospectrum was calculated. For data that ranges from [0 pi) or
[0 pi], set the SpectrumRange to half; for data that ranges from
[0 2pi), set the SpectrumRange to whole.

Hps = dspdata.pseudospectrum(...,'CenterDC',flag) uses the
value of flag to indicate whether the zero-frequency (DC) component is
centered. If flag is true, it indicates that the DC component is in the
center of the whole Nyquist range spectrum. Set the flag to false if
the DC component is on the left edge of the spectrum.
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Methods

Methods provide ways of performing functions directly on your dspdata
object. You can apply a method directly on the variable you assigned
to your dspdata.pseudospectrum object. You can use the following
methods with a dspdata.pseudospectrum object.

• centerdc

• halfrange

• normalizefreq

• plot

• wholerange

For example, to normalize the frequency and set the
NormalizedFrequency parameter to true, use

Hps = normalizefreq(Hps)

For detailed information on using the methods and plotting the
pseudospectrum, see the dspdata reference page.

Examples Storing and Plotting Pseudospectrum Data

Use eigenanalysis to estimate the pseudospectrum of a noisy sinusoidal
signal with two frequency components. Then store the results in a
pseudospectrum data object and plot it.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3) + cos(2*pi*t*10e3) + randn(size(t));
P = pmusic(x,4);
% Create data object
hps = dspdata.pseudospectrum(P,'Fs',Fs);
% Plot the pseudospectrum
plot(hps);
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See Also dspdata.msspectrum | dspdata.psd | spectrum
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Purpose Open FDATool Realize Model panel to create Simulink filter block

Syntax dspfwiz

Description
Note You must have the Simulink product installed to use this function.

dspfwiz opens FDATool with the Realize Model panel displayed.

Use other panels in FDATool to design your filter and then use the
Realize Model panel to create your filter as a subsystem block, which is
a combination of Sum, Gain, and Delay blocks, in a Simulink model.

If you also have the DSP System Toolbox software installed, you can
create a Digital Filter block instead of a subsystem block, by deselecting
the Build model using basic elements check box.

See Also fdatool | dfilt
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Purpose Duty cycle of pulse waveform

Syntax D = dutycycle(X)
D = dutycycle(X,FS)
D = dutycycle(X,T)
D = dutycycle(TAU,PRF)
[D,INITCROSS] = dutycycle(X,...)
[D,INITCROSS,FINALCROSS] = dutycycle(X,...)
[D,INITCROSS,FINALCROSS,NEXTCROSS] = dutycycle(X,...)
[D,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
dutycycle(X,...)
[D,INITCROSS,FINALCROSS,NEXTCROSS] = dutycycle(X,...,Name,

Value)
dutycycle(X,...)

Description D = dutycycle(X) returns the ratio of pulse width to pulse period
for each positive-polarity pulse. D has length equal to the number of
pulse periods in X. The sample instants of X correspond to the indices
of X. To determine the transitions that define each pulse, dutycycle
estimates the state levels of the input waveform by a histogram method.
dutycycle identifies all regions, which cross the upper-state boundary
of the low state and the lower-state boundary of the high state. The
low-state and high-state boundaries are expressed as the state level
plus or minus a multiple of the difference between the state levels. See
“State-Level Tolerances” on page 1-261.

D = dutycycle(X,FS) specifies the sampling frequency, FS, in hertz as
a positive scalar. The first sample instant of X corresponds to t=0.

D = dutycycle(X,T) specifies the sample instants, T, as a vector with
the same number of elements as X.

D = dutycycle(TAU,PRF) returns the ratio of pulse width to pulse
period for a pulse width of TAU seconds and a pulse repetition frequency
of PRF. The product of TAU and PRF must be less than or equal to 1.

[D,INITCROSS] = dutycycle(X,...) returns a vector, INITCROSS,
whose elements correspond to the mid-crossings (mid-reference level
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instants) of the initial transition of each pulse with a corresponding
NEXTCROSS.

[D,INITCROSS,FINALCROSS] = dutycycle(X,...) returns a vector,
FINALCROSS, whose elements correspond to the mid-crossings
(mid-reference level instants) of the final transition of each pulse with a
corresponding NEXTCROSS.

[D,INITCROSS,FINALCROSS,NEXTCROSS] = dutycycle(X,...) returns
a vector, NEXTCROSS, whose elements correspond to the mid-crossings
(mid-reference level instants) of the next detected transition for each
pulse.

[D,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
dutycycle(X,...) returns the mid-reference level, MIDLEV.
Because in a bilevel pulse waveform the state levels are constant,
MIDLEV is a scalar.

[D,INITCROSS,FINALCROSS,NEXTCROSS] =
dutycycle(X,...,Name,Value) returns the ratio of pulse width
to pulse period with additional options specified by one or more
Name,Value pair arguments.

dutycycle(X,...) plots the waveform, X, and marks the location of
the mid-reference level instants and the associated reference levels.
The state levels and associated lower and upper state boundaries are
also plotted.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.
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TAU

Pulse width in seconds. The product of TAU and PRF must be less than
or equal to 1.

PRF

Pulse repetition frequency in pulses/second. The product of TAU and
PRF must be less than or equal to 1.

Name-Value Pair Arguments

’MidPct’

Mid-reference level as a percentage of the waveform amplitude.

Default: 50

’Polarity’

Pulse polarity. Specify the polarity as 'positive' or 'negative'. If
you specify 'positive', dutycycle looks for pulses with positive-going
(positive polarity) initial transitions. If you specify 'negative',
dutycycle looks for pulses with negative-going (negative polarity)
initial transitions. See “Pulse Polarity” on page 1-259 for examples of
positive and negative-polarity pulses.

Default: 'positive'

’StateLevels’

Low- and high-state levels. StateLevels is a 1-by-2 real-valued
vector. The first element is the low-state level. The second element is
the high-state level. If you do not specify low- and high-state levels,
dutycycle estimates the state levels from the input waveform using
the histogram method.

’Tolerance’
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Tolerance levels (lower- and upper-state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-261.

Default: 2

Output
Arguments

D

Duty cycle. Duty cycle is the ratio of the pulse width to the pulse period.
Because the pulse width cannot exceed the pulse period, 0≤D ≤1.

INITCROSS

Mid-reference level instant of initial transition. Because the duty cycle
is defined as the ratio of pulse width to pulse period, initial transitions
are only reported when dutycycle finds a corresponding NEXTCROSS.

FINALCROSS

Mid-reference level instant of final transition. The duty cycle is defined
as the ratio of pulse width to pulse period. Thus, final transitions are
only reported when dutycycle finds a corresponding NEXTCROSS.

NEXTCROSS

Mid-reference level instant of the first initial transition after the final
transition of the preceding pulse.

MIDLEV

Mid-reference level. The waveform value that corresponds to the
mid-reference level.

Definitions Duty Cycle

The energy in a bilevel, or rectangular, pulse is equal to the product of
the peak power, Pt, and the pulse width, τ. Devices to measure energy
in a waveform operate on time scales longer than the duration of a
single pulse. Therefore, it is common to measure the average power
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where T is the pulse period.

The ratio of average power to peak power is the duty cycle:
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Pulse Polarity

If the pulse has a positive-going initial transition, the pulse has positive
polarity. The following figure shows a positive polarity pulse.
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Equivalently, a positive-polarity (positive-going) pulse has a
terminating state more positive than the originating state.

If the pulse has a negative-going initial transition, the pulse has
negative polarity. The following figure shows a negative-polarity pulse.

1-260



dutycycle

Equivalently, a negative-polarity (negative-going) pulse has a
originating state more positive than the terminating state.

State-Level Tolerances

Each state level can have an associated lower- and upper-state
boundary. These state boundaries are defined as the state level plus or
minus a scalar multiple of the difference between the high state and
low state. To provide a useful tolerance region, the scalar is typically
a small number such as 2/100 or 3/100. In general, the α% tolerance
region for the low state is defined as
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S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The
estimated state levels are indicated by a dashed red line.
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Examples Duty Cycle of Bilevel Waveform

Determine the duty cycle of a bilevel waveform. Use the vector indices
as the sample instants.
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load('pulseex.mat', 'x');
d = dutycycle(x);

Duty Cycle of Bilevel Waveform with Sampling Frequency

Determine the duty cycle of a bilevel waveform. The sampling frequency
is 4 MHz.

load('pulseex.mat', 'x','t');
fs = 1/(t(2)-t(1));
d = dutycycle(x,fs);

Duty Cycle of Bilevel Waveform with Three Pulses

Create a pulse waveform with three pulses. The sampling frequency
is 4 MHz. Determine the initial and final mid-reference level instants.
Plot the result.

Even though there are three pulses, only two pulses have corresponding
subsequent transitions.

load('pulseex.mat','x');
dt = 1/4e6;
ts = reshape(repmat(x(1:30),1,3),90,1);
t = 0:dt:(length(ts)*dt)-dt;
[d,initcross,finalcross,~,midlev] = dutycycle(ts,t);
plot(t,ts,'k'); hold on; grid on;
h0 = plot(initcross, midlev*ones(length(initcross)),'rx');
set(h0,'markersize',10,'linewidth',2.5);
h1 = plot(finalcross,midlev*ones(length(finalcross)),'bx');
set(h1,'markersize',10,'linewidth',2.5);
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References [1] Skolnik, M.I. Introduction to Radar Systems. New York, NY:
McGraw-Hill, 1980.

[2] IEEE Standard on Transitions, Pulses, and Related Waveforms.
IEEE Standard 181, 2003.

See Also midcross | pulseperiod | pulsesep | pulsewidth
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Purpose Elliptic filter design

Syntax [z,p,k] = ellip(n,Rp,Rs,Wp)
[z,p,k] = ellip(n,Rp,Rs,Wp,'ftype')
[b,a] = ellip(n,Rp,Rs,Wp)
[b,a] = ellip(n,Rp,Rs,Wp,'ftype')
[A,B,C,D] = ellip(n,Rp,Rs,Wp)
[A,B,C,D] = ellip(n,Rp,Rs,Wp,'ftype')
[z,p,k] = ellip(n,Rp,Rs,Wp,'s')
[z,p,k] = ellip(n,Rp,Rs,Wp,'ftype','s')
[b,a] = ellip(n,Rp,Rs,Wp,'s')
[b,a] = ellip(n,Rp,Rs,Wp,'ftype','s')
[A,B,C,D] = ellip(n,Rp,Rs,Wp,'s')
[A,B,C,D] = ellip(n,Rp,Rs,Wp,'ftype','s')

Description ellip designs lowpass, bandpass, highpass, and bandstop digital and
analog elliptic filters. Elliptic filters offer steeper rolloff characteristics
than Butterworth or Chebyshev filters, but are equiripple in both the
pass- and stopbands. In general, elliptic filters meet given performance
specifications with the lowest order of any filter type.

Digital Domain

[z,p,k] = ellip(n,Rp,Rs,Wp) designs an order n lowpass digital
elliptic filter with normalized passband edge frequency Wp, Rp dB of
ripple in the passband, and a stopband Rs dB down from the peak value
in the passband. It returns the zeros and poles in length n column
vectors z and p and the gain in the scalar k.

The normalized passband edge frequency is the edge of the passband,
at which the magnitude response of the filter is -Rp dB. For ellip, the
normalized cutoff frequency Wp is a number between 0 and 1, where
1 corresponds to half the sampling frequency (Nyquist frequency).
Smaller values of passband ripple Rp and larger values of stopband
attenuation Rs both lead to wider transition widths (shallower rolloff
characteristics).

If Wp is a two-element vector, Wp = [w1 w2], ellip returns an order 2*n
bandpass filter with passband w1 < ω < w2.
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[z,p,k] = ellip(n,Rp,Rs,Wp,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is one of the following:

• 'high' for a highpass digital filter with normalized passband edge
frequency Wp

• 'low' for a lowpass digital filter with normalized passband edge
frequency Wp

• 'stop' for an order 2*n bandstop digital filter if Wp is a two-element
vector, Wp = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, ellip directly obtains
other realizations of the filter. To obtain the transfer function form, use
two output arguments as shown below.

Note See “Limitations” on page 1-270 for information about numerical
issues that affect forming the transfer function.

[b,a] = ellip(n,Rp,Rs,Wp) designs an order n lowpass digital elliptic
filter with normalized passband edge frequency Wp, Rp dB of ripple in
the passband, and a stopband Rs dB down from the peak value in the
passband. It returns the filter coefficients in the length n+1 row vectors
b and a, with coefficients in descending powers of z.

H z
b b z b n z

a z a n z

n

n
( )

( ) ( ) ( )

( ) ( )
= + +…+ +

+ +…+ +

− −

− −
1 2 1

1 2 1

1

1

[b,a] = ellip(n,Rp,Rs,Wp,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
as described above.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = ellip(n,Rp,Rs,Wp) or

[A,B,C,D] = ellip(n,Rp,Rs,Wp,'ftype') where A, B, C, and D are
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and u is the input, x is the state vector, and y is the output.

Analog Domain

[z,p,k] = ellip(n,Rp,Rs,Wp,'s') designs an order n lowpass analog
elliptic filter with angular passband edge frequency Wp rad/s and
returns the zeros and poles in length n or 2*n column vectors z and p
and the gain in the scalar k.

The angular passband edge frequency is the edge of the passband, at
which the magnitude response of the filter is -Rp dB. For ellip, the
angular passband edge frequency Wp must be greater than 0 rad/s.

If Wp is a two-element vector with w1 < w2, then ellip(n,Rp,Rs,Wp,’s’)
returns an order 2*n bandpass analog filter with passband w1 < ω< w2.

[z,p,k] = ellip(n,Rp,Rs,Wp,'ftype','s') designs a highpass,
lowpass, or bandstop filter, where the string 'ftype' is 'high', 'low',
or 'stop', as described above.

With different numbers of output arguments, ellip directly obtains
other realizations of the analog filter. To obtain the transfer function
form, use two output arguments as shown below:

[b,a] = ellip(n,Rp,Rs,Wp,'s') designs an order n lowpass analog
elliptic filter with angular passband edge frequency Wp rad/s and
returns the filter coefficients in the length n+1 row vectors b and a, in
descending powers of s, derived from this transfer function:
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[b,a] = ellip(n,Rp,Rs,Wp,'ftype','s') designs a highpass,
lowpass, or bandstop filter, where the string 'ftype' is 'high', 'low',
or 'stop', as described above.

To obtain state-space form, use four output arguments as shown below:
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[A,B,C,D] = ellip(n,Rp,Rs,Wp,'s') or

[A,B,C,D] = ellip(n,Rp,Rs,Wp,'ftype','s') where A, B, C, and
D are

x Ax Bu
y Cx Du
= +
= +

and u is the input, x is the state vector, and y is the output.

Examples Lowpass Filter

For data sampled at 1000 Hz, design a sixth-order lowpass elliptic filter
with a passband edge frequency of 300 Hz, which corresponds to a
normalized value of 0.6, 3 dB of ripple in the passband, and 50 dB of
attenuation in the stopband:

[z,p,k] = ellip(6,3,50,300/500);
[sos,g] = zp2sos(z,p,k); % Convert to SOS form
Hd = dfilt.df2tsos(sos,g); % Create a dfilt object
h = fvtool(Hd) % Plot magnitude response
set(h,'Analysis','freq') % Display frequency response
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Limitations In general, you should use the [z,p,k] syntax to design IIR filters.
To analyze or implement your filter, you can then use the [z,p,k]
output with zp2sos and an sos dfilt structure. For higher order filters
(possibly starting as low as order 8), numerical problems due to roundoff
errors may occur when forming the transfer function using the [b,a]
syntax. The following example illustrates this limitation:

n = 6;
Rp = .1; Rs = 80;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,a] = ellip(n,Rp,Rs,Wn,ftype);
h1=dfilt.df2(b,a); % This is an unstable filter.

% Zero-Pole-Gain design
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[z, p, k] = ellip(n,Rp,Rs,Wn,ftype);
[sos,g]=zp2sos(z,p,k);
h2=dfilt.df2sos(sos,g);

% Plot and compare the results
hfvt=fvtool(h1,h2,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

Algorithms The design of elliptic filters is the most difficult and computationally
intensive of the Butterworth, Chebyshev Type I and II, and elliptic
designs. ellip uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the
ellipap function.

2 It converts the poles, zeros, and gain into state-space form.
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3 It transforms the lowpass filter to a bandpass, highpass, or bandstop
filter with the desired cutoff frequencies using a state-space
transformation.

4 For digital filter design, ellip uses bilinear to convert the analog
filter into a digital filter through a bilinear transformation with
frequency prewarping. Careful frequency adjustment guarantees
that the analog filters and the digital filters will have the same
frequency response magnitude at Wp or w1 and w2.

5 It converts the state-space filter back to transfer function or
zero-pole-gain form, as required.

See Also besself | butter | cheby1 | cheby2 | ellipap | ellipord
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Purpose Elliptic analog lowpass filter prototype

Syntax [z,p,k] = ellipap(n,Rp,Rs)

Description [z,p,k] = ellipap(n,Rp,Rs) returns the zeros, poles, and gain of an
order n elliptic analog lowpass filter prototype, with Rp dB of ripple in
the passband, and a stopband Rs dB down from the peak value in the
passband. The zeros and poles are returned in length n column vectors
z and p and the gain in scalar k. If n is odd, z is length n - 1. The
transfer function in factored zero-pole form is
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s z s z s z

s p s p s p
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Elliptic filters offer steeper rolloff characteristics than Butterworth and
Chebyshev filters, but they are equiripple in both the passband and the
stopband. Of the four classical filter types, elliptic filters usually meet a
given set of filter performance specifications with the lowest filter order.

ellipap sets the passband edge angular frequency ω0 of the elliptic
filter to 1 for a normalized result. The passband edge angular frequency
is the frequency at which the passband ends and the filter has a
magnitude response of 10-Rp/20.

Algorithms ellipap uses the algorithm outlined in [1]. It employs ellipk to
calculate the complete elliptic integral of the first kind and ellipj to
calculate Jacobi elliptic functions.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design, New York:
John Wiley & Sons, 1987. Chapter 7.

See Also besselap | buttap | cheb1ap | cheb2ap | ellip
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Purpose Minimum order for elliptic filters

Syntax [n,Wp] = ellipord(Wp,Ws,Rp,Rs)
[n,Wp] = ellipord(Wp,Ws,Rp,Rs,'s')

Description ellipord calculates the minimum order of a digital or analog elliptic
filter required to meet a set of filter design specifications.

Digital Domain

[n,Wp] = ellipord(Wp,Ws,Rp,Rs) returns the lowest order n of the
elliptic filter that loses no more than Rp dB in the passband and has at
least Rs dB of attenuation in the stopband. The scalar (or vector) of
corresponding cutoff frequencies Wp, is also returned. Use the output
arguments n and Wp in ellip.

Choose the input arguments to specify the stopband and passband
according to the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is
a scalar or a two-element vector with values between 0
and 1, with 1 corresponding to the normalized Nyquist
frequency, π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a
two-element vector with values between 0 and 1, with
1 corresponding to the normalized Nyquist frequency.

Rp Passband ripple, in decibels. This value is the
maximum permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the
number of decibels the stopband is attenuated with
respect to the passband response.

Use the following guide to specify filters of different types.
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Filter Type Stopband and Passband Specifications

Filter Type
Stopband and Passband
Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws
contains the one specified by
Wp (Ws(1) < Wp(1) < Wp(2) <
Ws(2)).

(0,Ws(1))
and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp
contains the one specified by
Ws (Wp(1) < Ws(1) < Ws(2) <
Wp(2)).

(0,Wp(1))
and
(Wp(2),1)

(Ws(1),Ws(2))

If your filter specifications call for a bandpass or bandstop filter with
unequal ripple in each of the passbands or stopbands, design separate
lowpass and highpass filters according to the specifications in this table,
and cascade the two filters together.

Analog Domain

[n,Wp] = ellipord(Wp,Ws,Rp,Rs,'s') finds the minimum order
n and cutoff frequencies Wp for an analog filter. You specify the
frequencies Wp and Ws similar to those described in the Description of
Stopband and Passband Filter Parameters on page 1-274 table above,
only in this case you specify the frequency in radians per second, and
the passband or the stopband can be infinite.

Use ellipord for lowpass, highpass, bandpass, and bandstop filters as
described in the Filter Type Stopband and Passband Specifications
on page 1-275 table above.
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Examples Example 1

For 1000 Hz data, design a lowpass filter with less than 3 dB of ripple
in the passband defined from 0 to 40 Hz and at least 60 dB of ripple in
the stopband defined from 150 Hz to the Nyquist frequency (500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Wp] = ellipord(Wp,Ws,Rp,Rs)
% Returns n =4 Wp =0.0800
[b,a] = ellip(n,Rp,Rs,Wp);
freqz(b,a,512,1000);
title('n=4 Elliptic Lowpass Filter')

Example 2

Now design a bandpass filter with a passband from 60 Hz to 200 Hz,
with less than 3 dB of ripple in the passband, and 40 dB attenuation in
the stopbands that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
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Rp = 3; Rs = 40;
[n,Wp] = ellipord(Wp,Ws,Rp,Rs)
% Returns n =5 Wp =[0.1200 0.4000]
[b,a] = ellip(n,Rp,Rs,Wp);
freqz(b,a,512,1000);
title('n=5 Elliptic Bandpass Filter')

Algorithms ellipord uses the elliptic lowpass filter order prediction formula
described in [1]. The function performs its calculations in the analog
domain for both the analog and digital cases. For the digital case, it
converts the frequency parameters to the s-domain before estimating
the order and natural frequencies, and then converts them back to the
z-domain.

ellipord initially develops a lowpass filter prototype by transforming
the passband frequencies of the desired filter to 1 rad/s (for low- and
highpass filters) and to -1 and 1 rad/s (for bandpass and bandstop
filters). It then computes the minimum order required for a lowpass
filter to meet the stopband specification.
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References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord | cheb1ord | cheb2ord | ellip
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Purpose Equivalent noise bandwidth

Syntax bw = enbw(window)
bw = enbw(window,fs)

Description bw = enbw(window) returns the two-sided equivalent noise bandwidth,
bw, for a uniformly sampled window, window. The equivalent noise
bandwidth is normalized by the noise power per frequency bin.

bw = enbw(window,fs) returns the two-sided equivalent noise
bandwidth, bw, in Hz.

Input
Arguments

window - Window vector
real-valued row or column vector

Uniformly sampled window vector, specified as a row or column vector
with real-valued elements.

Example: hamming(1000)

Data Types
double | single

fs - Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar.

Output
Arguments

bw - Equivalent noise bandwidth
positive scalar

Equivalent noise bandwidth, specified as a positive scalar.

Data Types
double | single
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Examples Equivalent Noise Bandwidth of Hamming Window

Determine the equivalent noise bandwidth of a Hamming window 1,000
samples in length.

bw = enbw(hamming(1000));

Equivalent Noise Bandwidth of Flat Top Window

Determine the equivalent noise bandwidth in Hz of a flat top window
10,000 samples in length. The sampling frequency is 44.1 kHz.

bw = enbw(flattopwin(10000), 44.1e3);

Equivalent Rectangular Noise Bandwidth

Obtain the equivalent rectangular noise bandwidth of a Von Hann
window and overlay the equivalent rectangular bandwidth on the
window’s magnitude spectrum. The window is 1000 samples in length
and the sampling frequency is 10 kHz.

Set the sampling frequency, create the window, and obtain the discrete
Fourier transform of the window with 0 frequency in the center of the
spectrum.

Fs = 10000;
win = hann(1000);
windft = fftshift(fft(win));

Obtain the equivalent (rectangular) noise bandwidth of the Von Hann
window.

bw = enbw(hann(1000),Fs);

Plot the squared-magnitude DFT of the window and use the equivalent
noise bandwidth to overlay the equivalent rectangle.

freq = -(Fs/2):Fs/length(win):Fs/2-(Fs/length(win));
plot(freq,20*log10(abs(windft))); xlabel('Hz'); ylabel('dB');
axis([-60 60 -40 60])
maxgain = 20*log10(abs(windft(length(win)/2+1)));
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hold on;
plot([-bw -bw],[-40 maxgain],'r--',...

[bw bw],[-40 maxgain],'r--','linewidth',2);
plot([-bw bw],[maxgain maxgain],'r--','linewidth',2);

Definitions Equivalent Noise Bandwidth

The equivalent noise bandwidth of a window is the width of a rectangle
whose area contains the same total power as the window. The height of
the rectangle is the peak squared magnitude of the window’s Fourier
transform.
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Assuming a sampling interval of 1, the total energy for the window,
w(n), can be expressed in the frequency or time-domain as

| ( )| | ( )|
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The peak magnitude of the window’s spectrum occurs at f=0. This
is given by
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To find the width of the equivalent rectangular bandwidth, divide the
area by the height.
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See “Equivalent Rectangular Noise Bandwidth” on page 1-280 for an
example that plots the equivalent rectangular bandwidth over the
magnitude spectrum of a Von Hann window.

See Also bandpower | sfdr
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Purpose Equiripple single-rate FIR filter from specification object

Syntax hd = design(d,'equiripple')
hd = design(d,'equiripple',designoption,value,designoption,
...value,...)

Description hd = design(d,'equiripple') designs an equiripple FIR digital
filter using the specifications supplied in the object d. Equiripple filter
designs minimize the maximum ripple in the passbands and stopbands.
hd is a dfilt object

hd = design(d,'equiripple',designoption,value,designoption,
...value,...) returns an equiripple FIR filter where you specify
design options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using equiripple, refer to the command line
help system. For example, to get specific information about using
equiripple with d, the specification object, enter the following at the
MATLAB prompt.

help(d,'equiripple')

Examples First create a lowpass equiripple filter. Assume the data is sampled at
10,000 Hertz. The passband frequency is 500 Hertz with a stopband
frequency of 700 Hz. The desired passband ripple is 1 dB with 60 dB
of stopband attenuation.

Fs=10000;
Hd=fdesign.lowpass('Fp,Fst,Ap,Ast',500,700,1,60,10000);
d=design(Hd,'equiripple');
fvtool(d);

Displaying the filter in FVTool shows the equiripple nature of the filter.
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The next example designs a lowpass equiripple filter with a direct-form
transposed structure and density factor of 20 by specifying the
FilterStructure and DensityFactor properties.

To set the design options for the filter, use the designopts method to
obtain a structure array containing the current design options.

Change the fields of the structure array to specify your design options
and invoke the design method with the structure array as an input
argument.

% Use the same filter design as the previous example
Fs = 10000;
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Hd = fdesign.lowpass('Fp,Fst,Ap,Ast',500,700,1,60,10000);
% Return the design options for the filter as a struct array
opts = designopts(Hd,'equiripple');
fieldnames(opts)
% Print out the filter structure- - direct-form FIR
opts.FilterStructure
% Change the filter structure to direct-form FIR transposed
opts.FilterStructure = 'dffirt';
% Change the filter density factor to 20
opts.DensityFactor = 20;
% Design the filter
d = design(Hd,'equiripple',opts)

An alternate way to design the preceding filter without using the
structure array is:

Fs = 10000;
Hd = fdesign.lowpass('Fp,Fst,Ap,Ast',500,700,1,60,10000);
d = design(Hd,'equiripple','FilterStructure','dffirt','DensityFactor',

See Also design | designmethods
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Purpose Equalize lengths of transfer function’s numerator and denominator

Syntax [b,a] = eqtflength(num,den)
[b,a,n,m] = eqtflength(num,den)

Description [b,a] = eqtflength(num,den) modifies the vector num and/or the
vector den, so that the resulting output vectors b and a have the same
length. The input vectors num and den may have different lengths. The
vector num represents the numerator polynomial of a given discrete-time
transfer function, and the vector den represents its denominator.
The resulting numerator b and denominator a represent the same
discrete-time transfer function, but these vectors have the same length.

[b,a,n,m] = eqtflength(num,den) modifies the vectors as above
and also returns the numerator order n and the denominator m, not
including any trailing zeros.

Use eqtflength to obtain a numerator and denominator of equal length
before applying transfer function conversion functions such as tf2ss
and tf2zp to discrete-time models.

Examples num = [1 0.5];
den = [1 0.75 0.6 0];
[b,a,n,m] = eqtflength(num,den);

Algorithms eqtflength(num,den) appends zeros to either num or den as necessary.
If both num and den have trailing zeros in common, these are removed.

See Also tf2ss | tf2zp
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Purpose Fall time of negative-going bilevel waveform transitions

Syntax F = falltime(X)
F = falltime(X,FS)
F = falltime(X,T)
[F,LT,UT] = falltime(...)
[F,LT,UT,LL,UL] = falltime(...)
[...] = falltime(...,Name,Value)
falltime(...)

Description F = falltime(X) returns a vector, F, containing the time each
transition of the bilevel waveform, X, takes to cross from the 90% to
10% reference levels. See “Percent Reference Levels” on page 1-291.
To determine the transitions, falltime estimates the state levels of
the input waveform by a histogram method. falltime identifies all
regions, which cross the lower-state boundary of the high state and the
upper-state boundary of the low state. The low-state and high-state
boundaries are expressed as the state level plus or minus a multiple of
the difference between the state levels. See “State-Level Tolerances” on
page 1-291. Because falltime uses interpolation, F may contain values
that do not correspond to sampling instants of the bilevel waveform, X.

F = falltime(X,FS) specifies the sampling frequency in hertz. The
sampling frequency determines the sample instants corresponding to
the elements in X. The first sample instant in X corresponds to t=0.
Because falltime uses interpolation, F may contain values that do not
correspond to sampling instants of the bilevel waveform, X.

F = falltime(X,T) specifies the sample instants, T, as a vector with
the same number of elements as X.

[F,LT,UT] = falltime(...) returns vectors, LT and UT, whose
elements correspond to the time instants where X crosses the lower
and upper percent reference levels.

[F,LT,UT,LL,UL] = falltime(...) returns the levels, LL and UL,
corresponding to the lower- and upper-percent reference levels.

1-287



falltime

[...] = falltime(...,Name,Value) returns the fall times with
additional options specified by one or more Name,Value pair
arguments.

falltime(...) plots the signal and darkens the regions of each
transition where fall time is computed. The plot marks the lower and
upper crossings and the associated reference levels. The state levels and
the associated lower- and upper-state boundaries are also displayed.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’PctRefLevels’

Reference levels as a percentage of the waveform amplitude. The
low-state level is defined to be 0 percent. The high-state level is
defined to be 100 percent. See “Percent Reference Levels” on page
1-291. 'PCTREFLEVELS' is a 2-element real row vector whose elements
correspond to the lower- and upper-percent reference levels.

Default: [10 90]

’StateLevels’

Low and high-state levels. Specifies the levels to use for the low- and
high-state levels as a 2-element real-valued row vector whose first and
second elements correspond to the low- and high-state levels.
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’Tolerance’

Tolerance levels (lower- and upper-state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-291.

Default: 2

Output
Arguments

F

Fall times. F is a vector containing the duration of each negative-going
transition. If you specify the sampling rate, FS, or the sampling
instants, T, fall times are in seconds. If you do not specify a sampling
rate, or sampling instants, fall times are in samples.

LT

Instants when negative-going transition crosses the lower-reference
level. By default, the lower-reference level is the 10% reference
level. You can change the default reference levels by specifying the
'PctRefLevels' name-value pair.

UT

Instants when negative-going transition crosses the upper-reference
level. By default, the upper reference level is the 90% reference
level. You can change the default reference levels by specifying the
'PctRefLevels' name-value pair.

LL

Lower-reference level in waveform amplitude units. LL is a vector
containing the waveform values corresponding to the lower-reference
level in each negative-going transition. By default, the lower-reference
level is the 10% reference level. You can change the default reference
levels by specifying the 'PctRefLevels' name-value pair.

UL

Upper-reference level in waveform amplitude units. LL is a vector
containing the waveform values corresponding to the upper-reference
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level in each negative-going transition. By default, the upper-reference
level is the 90% reference level. You can change the default reference
levels by specifying the 'PctRefLevels' name-value pair.

Definitions Negative-Going Transition

A negative-going transition in a bilevel waveform is a transition
from the high–state level to the low-state level. If the waveform is
differentiable in the neighborhood of the transition, an equivalent
definition is a transition with a negative first derivative. The following
figure shows a negative-going transition.
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In the preceding figure, the amplitude values of the waveform are not
displayed because a negative-going transition does not depend on the
actual waveform values. A negative-going transition is defined by the
direction of the transition.

Percent Reference Levels

If S1 is the low state, S2 is the high state, and U is the upper-percent
reference level. The waveform value corresponding to the upper percent
reference level is

S
U

S S1 2 1100
 ( )

If L is the lower percent reference level, the waveform value
corresponding to the lower percent reference level is

S
L

S S1 2 1100
 ( )

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity (positive-going) bilevel
waveform. The estimated state levels are indicated by a dashed red line.
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Examples Falltime in a Bilevel Waveform

Determine the fall time in samples for a 2.3 V clock waveform.
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Load the 2.3 V clock data. Determine the fall time in samples. Use the
default [10 90] percent reference levels.

load('negtransitionex.mat', 'x');
F = falltime(x);

The fall time is less than 1, indicating that the transition occurred in a
fraction of a sample.

Falltime with 20% and 80% Reference Levels

Determine the fall time in a 2.3 V clock waveform sampled at 4 MHz.
Compute the fall time using the 20% and 80% reference levels.

Load the 2.3 V clock data with sampling instants. Plot the waveform.

load('negtransitionex.mat','x','t');
plot(t,x);

Determine the fall time using the 20% and 80% reference levels..

F = falltime(x,'PctRefLevels',[20 80]);

Falltime, Reference-Level Instants, and Reference Levels

Determine the fall time, reference-level instants, and reference levels
in a 2.3 V clock waveform sampled at 4 MHz.

Load the 2.3 V clock waveform along with the sampling instants.

load('negtransitionex.mat','x','t');

Determine the falltime, reference-level instants, and reference levels.

[F,LT,UT,LL,UL] = falltime(x,t);

Plot the waveform in microseconds with the upper and lower reference
levels and reference level instants. Show that the fall time is the
difference between the lower- and upper-reference level instants.

plot(t.*1e6,x);
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xlabel('microseconds'); ylabel('Volts');
hold on; grid on;
plot(LT.*1e6,LL,'ro','markerfacecolor',[1 0 0]);
plot(UT.*1e6,UL,'ro','markerfacecolor',[1 0 0]);
fprintf('Rise time is %1.4f microseconds.\n',(LT-UT)*1e6)

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003, pp. 15–17.

See Also risetime | slewrate | statelevels
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Purpose Open Filter Design and Analysis Tool

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use
this tool to

• Design filters

• Analyze filters

• Modify existing filter designs

See “FDATool” and “Using FDATool” for detailed information about the
Filter Design and Analysis Tool.
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Tips The Filter Design and Analysis Tool provides more design methods than
the SPTool Filter Designer, which will be removed in a future release.
The Filter Design and Analysis Tool also integrates advanced filter
design methods from the DSP System Toolbox software.

Note The Filter Design and Analysis Tool requires a screen resolution
greater than 640 x 480.

See Also fvtool | sptool | wvtool
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Purpose Filter specification object

Syntax d = fdesign.response
d = fdesign.response(spec)
d = fdesign.response(...,Fs)
d = fdesign.response(...,magunits)

Description Filter Specification Objects

d = fdesign.response returns a filter specification object d, of filter
response response. To create filters from d, use one of the design
methods listed in “Using Filter Design Methods with Specification
Objects” on page 1-304

Note Several of the filter response types described below are only
available if your installation includes the DSP System Toolbox. The
DSP System Toolbox significantly expands the functionality available
for the specification, design, and analysis of filters.

Here is how you design filters using fdesign.

1 Use fdesign.response to construct a filter specification object.

2 Use designmethods to determine which filter design methods work
for your new filter specification object.

3 Use design to apply your filter design method from step 2 to your
filter specification object to construct a filter object.

4 Use FVTool to inspect and analyze your filter object.
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Note fdesign does not create filters. fdesign returns a filter
specification object that contains the specifications for a filter, such as
the passband cutoff or attenuation in the stopband. To design a filter
hd from a filter specification object d, use d with a filter design method
such as butter —hd = design(d,'butter').

response can be one of the entries in the following table that specify
the filter response desired, such as a bandstop filter or an interpolator.

fdesign Response
String Description

arbgrpdelay fdesign.arbgrpdelay creates an object to
specify allpass arbitrary group delay filters.
Requires the DSP System Toolbox

arbmag fdesign.arbmag creates an object to specify
IIR filters that have arbitrary magnitude
responses defined by the input arguments.

arbmagnphase fdesign.arbmagnphase creates an object
to specify IIR filters that have arbitrary
magnitude and phase responses defined by the
input arguments. Requires the DSP System
Toolbox.

audioweighting fdesign.audioweighting creates a filter
specification object for audio weighting filters.
The supported audio weighting types are: A,
C, C-message, ITU-T 0.41, and ITU-R 468-4
weighting. Requires the DSP System Toolbox

bandpass fdesign.bandpass creates an object to specify
bandpass filters.

bandstop fdesign.bandstop creates an object to specify
bandstop filters.
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fdesign Response
String Description

ciccomp fdesign.ciccomp creates an object to specify
filters that compensate for the CIC decimator
or interpolator response curves. Requires the
DSP System Toolbox.

comb fdesign.comb creates an object to specify a
notching or peaking comb filter. Requires the
DSP System Toolbox.

decimator fdesign.decimator creates an object to
specify decimators. Requires the DSP System
Toolbox

differentiator fdesign.differentiator creates an object to
specify an FIR differentiator filter.

fracdelay fdesign.fracdelay creates an object to
specify fractional delay filters. Requires the
DSP System Toolbox.

halfband fdesign.halfband creates an object to specify
halfband filters. Requires the DSP System
Toolbox.

highpass fdesign.highpass creates an object to specify
highpass filters.

hilbert fdesign.hilbert creates an object to specify
an FIR Hilbert transformer.

interpolator fdesign.interpolator creates an object
to specify interpolators. Requires the DSP
System Toolbox.

isinchp fdesign.isinchp creates an object to specify
an inverse sinc highpass filter. Requires the
DSP System Toolbox.
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fdesign Response
String Description

isinclp fdesign.isinclp creates an object to specify
an inverse sinc lowpass filters. Requires the
DSP System Toolbox.

lowpass fdesign.lowpass creates an object to specify
lowpass filters.

notch fdesign.notch creates an object to specify
notch filters. Requires the DSP System
Toolbox.

nyquist fdesign.nyquist creates an object to specify
nyquist filters. Requires the DSP System
Toolbox.

octave fdesign.octave creates an object to specify
octave and fractional octave filters. Requires
the DSP System Toolbox.

parameq fdesign.parameq creates an object to specify
parametric equalizer filters. Requires the
DSP System Toolbox.

peak fdesign.peak creates an object to specify peak
filters. Requires the DSP System Toolbox.

polysrc fdesign.polysrc creates an object to specify
polynomial sample-rate converter filters.
Requires the DSP System Toolbox.

pulseshaping fdesign.pulseshaping creates an object to
specify pulse-shaping filters.

rsrc fdesign.rsrc creates an object to specify
rational-factor sample-rate convertors.
Requires the DSP System Toolbox.

Use the doc fdesign.response syntax at the MATLAB prompt to get
help on a specific structure. Using doc in a syntax like
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doc fdesign.lowpass
doc fdesign.bandstop

gets more information about the lowpass or bandstop structure objects.

Each response has a property Specification that defines the
specifications to use to design your filter. You can use defaults or specify
the Specification property when you construct the specifications
object.

With the strings for the Specification property, you provide filter
constraints such as the filter order or the passband attenuation to use
when you construct your filter from the specification object.

Properties fdesign returns a filter specification object. Every filter specification
object has the following properties.

Property Name Default Value Description

Response Depends on the
chosen type

Defines the type of filter
to design, such as an
interpolator or bandpass
filter. This is a read-only
value.

Specification Depends on the
chosen type

Defines the filter
characteristics used to
define the desired filter
performance, such as the
cutoff frequency Fc or the
filter order N.
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Property Name Default Value Description

Description Depends on the
filter type you
choose

Contains descriptions of
the filter specifications
used to define the object,
and the filter specifications
you use when you create a
filter from the object. This
is a read-only value.

NormalizedFrequency Logical true Determines whether the
filter calculation uses
normalized frequency
from 0 to 1, or the
frequency band from 0
to Fs/2, the sampling
frequency. Accepts either
true or false without
single quotation marks.
Audio weighting filters do
not support normalized
frequency.

In addition to these properties, filter specification objects may have
other properties as well, depending on whether they design dfilt
objects or mfilt objects.

Added Properties
for mfilt Objects Description

DecimationFactor Specifies the amount to decrease the sampling
rate. Always a positive integer.

InterpolationFactor Specifies the amount to increase the sampling
rate. Always a positive integer.

PolyphaseLength Polyphase length is the length of each
polyphase subfilter that composes the
decimator or interpolator or rate-change
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Added Properties
for mfilt Objects Description

factor filters. Total filter length is the product
of pl and the rate change factors. pl must be
an even integer.

d = fdesign.response(spec). In spec, you specify the variables to
use that define your filter design, such as the passband frequency or
the stopband attenuation. The specifications are applied to the filter
design method you choose to design your filter.

For example, when you create a default lowpass filter specification
object, fdesign.lowpass sets the passband frequency Fp, the stopband
frequency Fst, the stopband attenuation Ast, and the passband ripple
Ap :

H = fdesign.lowpass
% Without a terminating semicolon
% the filter specifications are displayed

The default specification 'Fp,Fst,Ap,Ast' is only one of the possible
specifications for fdesign.lowpass. To see all available specifications:

H = fdesign.lowpass;
set(H,'specification')

The DSP System Toolbox software supports all available specification
strings. The Signal Processing Toolbox supports a subset of the
specification strings. See the reference pages for the filter specification
object to determine which specification strings your installation
supports.

One important note is that the specification string you choose
determines which design methods apply to the filter specifications
object.

Specifications that do not contain the filter order result in minimum
order designs when you invoke the design method:
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d = fdesign.lowpass;

% Specification is Fp,Fst,Ap,Ast

Hd = design(d,'equiripple');

length(Hd.Numerator) % returns 43

% Filter order is 42

fvtool(Hd) %view magnitude

d = fdesign.response(...,Fs) specifies the sampling frequency in
Hz to use in the filter specifications. The sampling frequency is a scalar
trailing all other input arguments. If you specify a sampling frequency,
all frequency specifications are in Hz.

d = fdesign.response(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of the following strings:

• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in decibels

• 'squared'— specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Using Filter Design Methods with Specification Objects

After you create a filter specification object, you use a filter design
method to implement your filter with a selected algorithm. Use
designmethods to determine valid design methods for your filter
specification object.

d = fdesign.lowpass('N,Fc,Ap,Ast',10,0.2,0.5,40);
designmethods(d)
% Design FIR equiripple filter
hd = design(d,'equiripple');

When you use any of the design methods without providing an output
argument, the resulting filter design appears in FVTool by default.
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Along with filter design methods, fdesign works with supporting
methods that help you create filter specification objects or determine
which design methods work for a given specifications object.

Supporting
Function Description

setspecs Set all of the specifications simultaneously.

designmethods Return the design methods.

designopts Return the input arguments and default values
that apply to a specifications object and method

You can set filter specification values by passing them after the
Specification argument, or by passing the values without the
Specification string.

Filter object constructors take the input arguments in the same
order as setspecs and the order in the strings for Specification.
Enter doc setspecs at the prompt for more information about using
setspecs.

When the first input to fdesign is not a valid Specification string
like ’n,fc’, fdesign assumes that the input argument is a filter
specification and applies it using the default Specification string
—fp,fst,ap,ast for a lowpass object, for example.

Examples The following examples require only the Signal Processing Toolbox.

Example 1–Bandstop Filter

A bandstop filter specification object for data sampled at 8 kHz. The
stopband between 2 and 2.4 kHz is attenuated at least 80 dB:

H = fdesign.bandstop('Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2',...
1600,2000,2400,2800,1,80,1,8000);

Example 2–Lowpass Filter

A lowpass filter specification object for data sampled at 10 kHz. The
passband frequency is 500 Hz and the stopband frequency is 750 Hz.
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The passband ripple is set to 1 dB and the required attenuation in the
stopband is 80 dB.

H = fdesign.lowpass('Fp,Fst,Ap,Ast',500,750,1,80,10000);

Example 3–Highpass Filter

A default highpass filter specification object.

H = fdesign.highpass % Creates specifications object.
H.Description

Notice the correspondence between the property values in
Specification and Description— in Description you see in words
the definitions of the variables shown in Specification.

Example 4–Filter Specification and Design

Lowpass Butterworth filter specification object

Use a filter specification object to construct a lowpass Butterworth
filter with default Specification 'Fp,Fst,Ap,Ast'. Set the passband
edge frequency to 0.4π radians/sample, a stopband frequency of 0.5π
radians/sample, a passband ripple of 1 dB, and 80 dB of stopband
attenuation.

d = fdesign.lowpass(0.4,0.5,1,80);

Determine which design methods apply to d.

designmethods(d)

You can use d and the butter design method to design a Butterworth
filter.

hd = design(d,'butter','matchexactly','passband');
fvtool(hd);

The resulting filter magnitude response shown by FVTool appears in
the following figure.
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If you have the DSP System Toolbox software installed, the preceding
figure appears with the filter specification mask.

See Also designmethods | designopts | fdatool | filterbuilder | fvtool
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Purpose Arbitrary response magnitude filter specification object

Syntax D= fdesign.arbmag
D= fdesign.arbmag(SPEC)
D = fdesign.arbmag(SPEC,specvalue1,specvalue2,...)
D = fdesign.arbmag(specvalue1,specvalue2,specvalue3)
D = fdesign.arbmag(...,Fs)

Description D= fdesign.arbmag constructs an arbitrary magnitude filter
specification object D.

D= fdesign.arbmag(SPEC) initializes the Specification property to
SPEC. The input argument SPEC must be one of the strings shown in
the following table. Specification strings are not case sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'N,F,A' — Single band design (default)

• 'F,A,R' — Single band minimum order design *

• 'N,B,F,A' — Multiband design

• 'N,B,F,A,C' — Constrained multiband design *

• 'B,F,A,R'— Multiband minimum order design *

• 'Nb,Na,F,A' — Single band design *

• 'Nb,Na,B,F,A' — Multiband design *

The string entries are defined as follows:

• A — Amplitude vector. Values in A define the filter amplitude at
frequency points you specify in f, the frequency vector. If you use A,
you must use F as well. Amplitude values must be real. For complex
values designs, use fdesign.arbmagnphase.

• B — Number of bands in the multiband filter
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• C — Constrained band flag. This enables you to constrain the
passband ripple in your multiband design. You cannot constrain the
passband ripple in all bands simultaneously.

• F — Frequency vector. Frequency values in specified in F indicate
locations where you provide specific filter response amplitudes.
When you provide F, you must also provide A.

• N— Filter order for FIR filters and the numerator and denominator
orders for IIR filters.

• Nb — Numerator order for IIR filters

• Na — Denominator order for IIR filter designs

• R — Ripple

By default, this method assumes that all frequency specifications are
supplied in normalized frequency.

Specifying Frequency and Amplitude Vectors

F and A are the input arguments you use to define the filter
response desired. Each frequency value you specify in F must have
a corresponding response value in A. The following table shows how
F and A are related.

Define the frequency vector F as [0 0.25 0.3 0.4 0.5 0.6 0.7 0.75
1.0]

Define the response vector A as [1 1 0 0 0 0 0 1 1]

These specifications connect F and A as shown here:

F (Normalized
Frequency) A (Response Desired at F)

0 1

0.25 1

0.3 0

0.4 0
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F (Normalized
Frequency) A (Response Desired at F)

0.5 0

0.6 0

0.7 0

0.75 1

1.0 1

Different specifications can have different design methods available.
Use designmethods to get a list of design methods available for a given
specification string and filter specification object.

Use designopts to get a list of design options available for a filter
specification object and a given design method. Enter help(D,METHOD)
to get detailed help on the available design options for a given design
method.

D = fdesign.arbmag(SPEC,specvalue1,specvalue2,...)
initializes the specifications with specvalue1, specvalue2. Use
get(D,'Description') for descriptions of the various specifications
specvalue1, specvalue2, ... specvalueN.

D = fdesign.arbmag(specvalue1,specvalue2,specvalue3) uses
the default specification string 'N,F,A', setting the filter order, filter
frequency vector, and the amplitude vector to the values specvalue1,
specvalue2, and specvalue3.

D = fdesign.arbmag(...,Fs) specifies the sampling frequency in Hz.
All other frequency specifications are also assumed to be in Hz when
you specify Fs.

Examples Design of a multiband arbitrary-magnitude filter

Use fdesign.arbmag to design a 3–band filter.

Use the given frequency and amplitude vectors in “Specifying Frequency
and Amplitude Vectors” on page 1-309.
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N = 150;
B = 3;
F = [0 .25 .3 .4 .5 .6 .7 .75 1];
A = [1 1 0 0 0 0 0 1 1];
A1 = A(1:2);
A2 = A(3:7);
A3 = A(8:end);
F1 = F(1:2);
F2 = F(3:7);
F3 = F(8:end);
d = fdesign.arbmag('N,B,F,A',N,B,F1,A1,F2,A2,F3,A3);
Hd = design(d);
fvtool(Hd)

A response with two passbands — one roughly between 0 and 0.25 and
the second between 0.75 and 1 — results from the mapping between
F and A.
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Design of a single band arbitrary-magnitude filter

Use fdesign.arbmag to design a single band equiripple filter.

n = 120;
f = linspace(0,1,100); % 100 frequency points.
as = ones(1,100)-f*0.2;
absorb = [ones(1,30),(1-0.6*bohmanwin(10))',...
ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];
a = as.*absorb;
d = fdesign.arbmag('N,F,A',n,f,a);
hd1 = design(d,'equiripple');
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If you have the DSP System Toolbox, you can design a minimum-phase
equiripple filter.

hd2 = design(d,'equiripple','MinPhase',true);
hfvt = fvtool([hd1 hd2],'analysis','polezero');
legend(hfvt,'Equiripple Filter','Minimum-phase Equiripple Filter');

Design of a multiband minimum order arbitrary-magnitude
filter

Use fdesign.arbmag to design a multiband minimum order filter.

This example requires the DSP System Toolbox.

Place the notches at 0.25π and 0.55π radians/sample

d = fdesign.arbmag('B,F,A,R');
d.NBands = 5;
d.B1Frequencies = [0 0.2];
d.B1Amplitudes = [1 1];
d.B1Ripple = 0.25;
d.B2Frequencies = 0.25;
d.B2Amplitudes = 0;
d.B3Frequencies = [0.3 0.5];
d.B3Amplitudes = [1 1];
d.B3Ripple = 0.25;
d.B4Frequencies = 0.55;
d.B4Amplitudes = 0;
d.B5Frequencies = [0.6 1];
d.B5Amplitudes = [1 1];
d.B5Ripple = 0.25;
Hd = design(d,'equiripple');
fvtool(Hd)
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Design of a multiband constrained arbitrary-magnitude filter

Use fdesign.arbmag to design a multiband constrained FIR filter.

This example requires the DSP System Toolbox.

Force the frequency response at 0.15π radians/sample to 0 dB.

d = fdesign.arbmag('N,B,F,A,C',82,2);
d.B1Frequencies = [0 0.06 .1];
d.B1Amplitudes = [0 0 0];
d.B2Frequencies = [.15 1];
d.B2Amplitudes = [1 1];
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% Design a filter with no constraints
Hd1 = design(d,'equiripple','B2ForcedFrequencyPoints',0.15);
% Add a constraint to the first band to increase attenuation
d.B1Constrained = true;
d.B1Ripple = .001;
Hd2 = design(d,'equiripple','B2ForcedFrequencyPoints',0.15);
hfvt = fvtool(Hd1,Hd2);
legend(hfvt,'Original Design','Design with Constrained Stopband Ripple

See Also design | designmethods | fdesign
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Purpose Bandpass filter specification object

Syntax D = fdesign.bandpass
D = fdesign.bandpass(SPEC)
D = fdesign.bandpass(spec,specvalue1,specvalue2,...)
D = fdesign.bandpass(specvalue1,specvalue2,specvalue3,
specvalue4,...specvalue4,specvalue5,specvalue6)
D = fdesign.bandpass(...,Fs)
D = fdesign.bandpass(...,MAGUNITS)

Description D = fdesign.bandpass constructs a bandpass filter specification object
D, applying default values for the properties Fstop1, Fpass1, Fpass2,
Fstop2, Astop1, Apass, and Astop2 — one possible set of values you
use to specify a bandpass filter.

D = fdesign.bandpass(SPEC) constructs object D and sets its
Specification property to SPEC. Entries in the SPEC string represent
various filter response features, such as the filter order, that govern the
filter design. Valid entries for SPEC are shown below and used to define
the bandpass filter. The strings are not case sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' (default spec)

• 'N,F3dB1,F3dB2'

• "N,F3dB1,F3dB2,Ap' *

• 'N,F3dB1,F3dB2,Ast' *

• 'N,F3dB1,F3dB2,Ast1,Ap,Ast2' *

• 'N,F3dB1,F3dB2,BWp *

• 'N,F3dB1,F3dB2,BWst' *

• 'N,Fc1,Fc2'
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• 'N,Fc1,Fc2,Ast1,Ap,Ast2'

• 'N,Fp1,Fp2,Ap'

• 'N,Fp1,Fp2,Ast1,Ap,Ast2'

• 'N,Fst1,Fp1,Fp2,Fst2'

• 'N,Fst1,Fp1,Fp2,Fst2,C' *

• 'N,Fst1,Fp1,Fp2,Fst2,Ap' *

• 'N,Fst1,Fst2,Ast'

• 'Nb,Na,Fst1,Fp1,Fp2,Fst2' *

The string entries are defined as follows:

• Ap— amount of ripple allowed in the pass band. Also called Apass.

• Ast1 — attenuation in the first stop band in decibels (the default
units). Also called Astop1.

• Ast2— attenuation in the second stop band in decibels (the default
units). Also called Astop2.

• BWp — bandwidth of the filter passband. Specified in normalized
frequency units.

• BWst — bandwidth of the filter stopband. Specified in normalized
frequency units.

• C — Constrained band flag. This enables you to specify passband
ripple or stopband attenuation for fixed-order designs in one or two
of the three bands.

In the specification string 'N,Fst1,Fp1,Fp2,Fst2,C', you
cannot specify constraints in both stopbands and the passband
simultaneously. You can specify constraints in any one or two bands.

• F3dB1— cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
(IIR filters)
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• F3dB2— cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
(IIR filters)

• Fc1— cutoff frequency for the point 6 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
(FIR filters)

• Fc2— cutoff frequency for the point 6 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
(FIR filters)

• Fp1— frequency at the edge of the start of the pass band. Specified
in normalized frequency units. Also called Fpass1.

• Fp2— frequency at the edge of the end of the pass band. Specified in
normalized frequency units. Also called Fpass2.

• Fst1 — frequency at the edge of the start of the first stop band.
Specified in normalized frequency units. Also called Fstop1.

• Fst2 — frequency at the edge of the start of the second stop band.
Specified in normalized frequency units. Also called Fstop2.

• N — filter order for FIR filters. Or both the numerator and
denominator orders for IIR filters when na and nb are not provided.

• Na — denominator order for IIR filters

• Nb — numerator order for IIR filters

Graphically, the filter specifications look similar to those shown in the
following figure.
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Regions between specification values like Fst1 and Fp1 are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandpass filter specification
object change depending on the Specification string. Use
designmethods to determine which design methods apply to an object
and the Specification property value.

Use designopts to determine the design options for a given design
method. Enter help(D,METHOD) at the MATLAB command line to
obtain detailed help on the design options for a given design method,
METHOD.

D = fdesign.bandpass(spec,specvalue1,specvalue2,...)
constructs an object D and sets its specifications at construction time.

D = fdesign.bandpass(specvalue1,specvalue2,specvalue3,
specvalue4,...specvalue4,specvalue5,specvalue6)
constructs Dwith the default Specification property string,
using the values you provide as input arguments for
specvalue1,specvalue2,specvalue3,specvalue4,specvalue4,specvalue5,
specvalue6 and specvalue7.

D = fdesign.bandpass(...,Fs) adds the argument Fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.
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D = fdesign.bandpass(...,MAGUNITS) specifies the units for any
magnitude specification you provide in the input arguments. MAGUNITS
can be one of

• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in dB (decibels)

• 'squared'— specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples Filter a discrete-time signal with a bandpass filter. The signal is a sum
of three discrete-time sinusoids, π/8, π/2, and 3π/4 radians/sample.

n = 0:159;
x = cos(pi/8*n)+cos(pi/2*n)+sin(3*pi/4*n);

Design an FIR equiripple bandpass filter to remove the lowest and
highest discrete-time sinusoids.

d = fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2',1/4,3/8,5/8,6/8,60,
Hd = design(d,'equiripple');

Apply the filter to the discrete-time signal.

y = filter(Hd,x);
freq = 0:(2*pi)/length(x):pi;
xdft = fft(x);
ydft = fft(y);
plot(freq,abs(xdft(1:length(x)/2+1)));
hold on;
plot(freq,abs(ydft(1:length(x)/2+1)),'r','linewidth',2);
legend('Original Signal','Bandpass Signal');
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Design an IIR Butterworth filter of order 10 with 3–dB frequencies of 1
and 1.2 kHz. The sampling frequency is 10 kHz

d = fdesign.bandpass('N,F3dB1,F3dB2',10,1e3,1.2e3,1e4);
Hd = design(d,'butter');
fvtool(Hd)

This example requires the DSP System Toolbox software.

Design a constrained-band FIR equiripple filter of order 100 with
a passband of [1, 1.4] kHz. Both stopband attenuation values are
constrained to 60 dB. The sampling frequency is 10 kHz.

d = fdesign.bandpass('N,Fst1,Fp1,Fp2,Fst2,C',100,800,1e3,1.4e3,1.6e3,1
d.Stopband1Constrained = true; d.Astop1 = 60;
d.Stopband2Constrained = true; d.Astop2 = 60;
Hd = design(d,'equiripple');
fvtool(Hd);
measure(Hd)

The passband ripple is slightly over 2 dB. Because the design constrains
both stopbands, you cannot constrain the passband ripple.

See Also fdesign, fdesign.bandstop, fdesign.highpass, fdesign.lowpass
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Purpose Bandstop filter specification object

Syntax D = fdesign.bandstop
D = fdesign.bandstop(SPEC)
D = fdesign.bandstop(SPEC,specvalue1,specvalue2,...)
D = fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,...
specvalue5,specvalue6,specvalue7)
D = fdesign.bandstop(...,Fs)
D = fdesign.bandstop(...,MAGUNITS)

Description D = fdesign.bandstop constructs a bandstop filter specification object
D, applying default values for the properties Fpass1, Fstop1, Fstop2,
Fpass2, Apass1, Astop1 and Apass2.

D = fdesign.bandstop(SPEC) constructs object D and sets the
Specification property to SPEC. Entries in the SPEC string represent
various filter response features, such as the filter order, that govern
the filter design. Valid entries for SPEC are shown below. The strings
are not case sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' (default spec)

• 'N,F3dB1,F3dB2'

• 'N,F3dB1,F3dB2,Ap' *

• 'N,F3dB1,F3dB2,Ap,Ast' *

• 'N,F3dB1,F3dB2,Ast' *

• 'N,F3dB1,F3dB2,BWp' *

• 'N,F3dB1,F3dB2,BWst' *

• 'N,Fc1,Fc2'

1-322



fdesign.bandstop

• 'N,Fc1,Fc2,Ap1,Ast,Ap2'

• 'N,Fp1,Fp2,Ap'

• 'N,Fp1,Fp2,Ap,Ast'

• 'N,Fp1,Fst1,Fst2,Fp2'

• 'N,Fp1,Fst1,Fst2,Fp2,C' *

• 'N,Fp1,Fst1,Fst2,Fp2,Ap' *

• 'N,Fst1,Fst2,Ast'

• 'Nb,Na,Fp1,Fst1,Fst2,Fp2' *

The string entries are defined as follows:

• Ap — amount of ripple allowed in the passband in decibels (the
default units). Also called Apass.

• Ap1 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass1.

• Ap2 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass2.

• Ast — attenuation in the first stopband in decibels (the default
units). Also called Astop1.

• BWp — bandwidth of the filter passband. Specified in normalized
frequency units.

• BWst — bandwidth of the filter stopband. Specified in normalized
frequency units.

• C — Constrained band flag. This enables you to specify passband
ripple or stopband attenuation for fixed-order designs in one or two
of the three bands.

In the specification string 'N,Fp1,Fst1,Fst2,Fp2,C', you cannot
specify constraints simultaneously in both passbands and the
stopband. You can specify constraints in any one or two bands.
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• F3dB1— cutoff frequency for the point 3 dB point below the passband
value for the first cutoff.

• F3dB2— cutoff frequency for the point 3 dB point below the passband
value for the second cutoff.

• Fc1— cutoff frequency for the point 6 dB point below the passband
value for the first cutoff. (FIR filters)

• Fc2— cutoff frequency for the point 6 dB point below the passband
value for the second cutoff. (FIR filters)

• Fp1— frequency at the start of the pass band. Also called Fpass1.

• Fp2— frequency at the end of the pass band. Also called Fpass2.

• Fst1— frequency at the end of the first stop band. Also called Fstop1.

• Fst2 — frequency at the start of the second stop band. Also called
Fstop2.

• N — filter order.

• Na — denominator order for IIR filters.

• Nb — numerator order for IIR filters.

Graphically, the filter specifications look similar to those shown in the
following figure.
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Regions between specification values like Fp1 and Fst1 are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandstop filter specification
object change depending on the Specification string. Use
designmethods to determine which design methods apply to an object
and the Specification property value.

Use designopts to determine the design options for a given design
method. Enter help(D,METHOD) at the MATLAB command line to
obtain detailed help on the design options for a given design method,
METHOD.

D = fdesign.bandstop(SPEC,specvalue1,specvalue2,...)
constructs an object D and sets its specifications at construction time.

D =
fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,...
specvalue5,specvalue6,specvalue7) constructs an object D with the
default Specification property string , using the values you provide in
specvalue1,specvalue2,specvalue3,specvalue4,specvalue5,
specvalue6 and specvalue7.

D = fdesign.bandstop(...,Fs) adds the argument Fs, specified in Hz
to define the sampling frequency. If you specify the sampling frequency
as a trailing scalar, all frequencies in the specifications are in Hz as well.

D = fdesign.bandstop(...,MAGUNITS) specifies the units for any
magnitude specification you provide in the input arguments. MAGUNITS
can be one of

• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in dB (decibels)

• 'squared'— specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.
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Examples Construct a bandstop filter to reject the discrete frequency band between
3π/8 and 5π/8 radians/sample. Apply the filter to a discrete-time signal
consisting of the superposition of three discrete-time sinusoids.

Design an FIR equiripple filter and view the magnitude response.

d = fdesign.bandstop('Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2',2/8,3/8,5/8,6/8,1,60
Hd = design(d,'equiripple');
fvtool(Hd)

Construct the discrete-time signal to filter.

n = 0:99;
x = cos(pi/5*n)+sin(pi/2*n)+cos(4*pi/5*n);
y = filter(Hd,x);
xdft = fft(x);
ydft = fft(y);
freq = 0:(2*pi)/length(x):pi;
plot(freq,abs(xdft(1:length(x)/2+1)));
hold on;
plot(freq,abs(ydft(1:length(y)/2+1)),'r','linewidth',2);
xlabel('Radians/Sample'); ylabel('Magnitude');
legend('Original Signal','Bandstop Signal');

Create a Butterworth bandstop filter for data sampled at 10 kHz. The
stopband is [1,1.5] kHz. The order of the filter is 20.

d = fdesign.bandstop('N,F3dB1,F3dB2',20,1e3,1.5e3,1e4);
Hd = design(d,'butter');
fvtool(Hd);

Zoom in on the magnitude response plot to verify that the 3-dB down
points are located at 1 and 1.5 kHz.

The following example requires the DSP System Toolbox license.
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Design a constrained-band FIR equiripple filter of order 100 for data
sampled at 10 kHz. You can specify constraints on at most two of the
three bands: two passbands and one stopband. In this example, you
choose to constrain the passband ripple to be 0.5 dB in each passband.
Design the filter, visualize the magnitude response and measure the
filter’s design.

d = fdesign.bandstop('N,Fp1,Fst1,Fst2,Fp2,C',100,800,1e3,1.5e3,1.7e3,1
d.Passband1Constrained = true; d.Apass1 = 0.5;
d.Passband2Constrained = true; d.Apass2 = 0.5;
Hd = design(d,'equiripple');
fvtool(Hd);
measure(Hd)

With this order filter and passband ripple constraints, you achieve
approximately 50 dB of stopband attentuation.

See Also fdesign, fdesign.bandpass, fdesign.highpass, fdesign.lowpass
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Purpose Differentiator filter specification object

Syntax D = fdesign.differentiator
D = fdesign.differentiator(SPEC)
D = fdesign.differentiator(SPEC,specvalue1,specvalue2, ...)
D = fdesign.differentiator(specvalue1)
D = fdesign.differentiator(...,Fs)
D = fdesign.differentiator(...,MAGUNITS)

Description D = fdesign.differentiator constructs a default differentiator filter
designer D with the filter order set to 31.

D = fdesign.differentiator(SPEC) initializes the filter designer
Specification property to SPEC. You provide one of the following
strings as input to replace SPEC. The string you provide is not case
sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'N' — Full band differentiator (default)

• 'N,Fp,Fst' — Partial band differentiator

• 'N,Fp,Fst,Ap'— Partial band differentiator *

• 'N,Fp,Fst,Ast' — Partial band differentiator *

• 'Ap' — Minimum order full band differentiator *

• 'Fp,Fst,Ap,Ast'— Minimum order partial band differentiator *

The string entries are defined as follows:

• Ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• Ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

1-328



fdesign.differentiator

• Fp— frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• Fst— frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• N — filter order.

By default, fdesign.differentiator assumes that all frequency
specifications are provided in normalized frequency units. Also, decibels
is the default for all magnitude specifications.

Use designopts to determine the design options for a given design
method. Enter help(D,METHOD) at the MATLAB command line to
obtain detailed help on the design options for a given design method,
METHOD.

D = fdesign.differentiator(SPEC,specvalue1,specvalue2, ...)
initializes the filter designer specifications in SPEC with specvalue1,
specvalue2, and so on. To get a description of the specifications
specvalue1, specvalue2, and more, enter

get(d,'description')

at the Command prompt.

D = fdesign.differentiator(specvalue1) assumes the default
specification string N, setting the filter order to the value you provide.

D = fdesign.differentiator(...,Fs) adds the argument Fs, specified
in Hz to define the sampling frequency to use. In this case, all
frequencies in the specifications are in Hz as well.

D = fdesign.differentiator(...,MAGUNITS) specifies the units for
any magnitude specification you provide in the input arguments.
MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in dB (decibels)

• 'squared'— specify the magnitude in power units
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When you omit the MAGUNITS argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples Use an FIR equiripple differentiator to transform frequency modulation
into amplitude modulation, which can be detected using an envelope
detector.

Modulate a message signal consisting of a 20-Hz sine wave with a 1 kHz
carrier frequency. The sampling frequency is 10 kHz .

t = linspace(0,1,1e4);
x = cos(2*pi*20*t);
Fc = 1e3;
Fs = 1e4;
y = modulate(x,Fc,Fs,'fm');

Design the equiripple FIR differentiator of order 31.

d = fdesign.differentiator(31,1e4);
Hd = design(d,'equiripple');

Filter the modulated signal and take the Hilbert transform to obtain
the envelope.

y1 = filter(Hd,y);
y1 = hilbert(y1);
% Plot the envelope
plot(t.*1000,abs(y1));
xlabel('Milliseconds'); ylabel('Magnitude');
grid on;
title('Envelope of the Demodulated Signal');
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From the preceding figure, you see that the envelope completes two
cycles every 100 milliseconds. The envelope is oscillating at 20 Hz,
which corresponds to the frequency of the message signal.

Design an FIR differentiator using least squares and plot the zero
phase response.

d = fdesign.differentiator(33); % Filter order is 33.
hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase',...
'frequencyrange','[-pi, pi)')
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Design a narrow band differentiator. Differentiate the first 25 percent
of the frequencies in the Nyquist range and filter the higher frequencies.

Fs=20000; %sampling frequency
d = fdesign.differentiator('N,Fp,Fst',54,2500,3000,Fs);
Hd= design(d,'equiripple');
% Weight the stopband to increase attenuation
Hd1 = design(d,'equiripple','Wstop',4);
hfvt = fvtool(Hd,Hd1,'magnitudedisplay','zero-phase',...
'frequencyrange','[0, Fs/2)');
legend(hfvt,'Without stopband weighting',...
'With stopband weighting');
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See Also design | fdesign
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Purpose Highpass filter specification object

Syntax D = fdesign.highpass
D = fdesign.highpass(SPEC)
D = fdesign.highpass(SPEC,specvalue1,specvalue2,...)
D = fdesign.highpass(specvalue1,specvalue2,specvalue3,
specvalue4)
D = fdesign.highpass(...,Fs)
D = fdesign.highpass(...,MAGUNITS)

Description D = fdesign.highpass constructs a highpass filter specification object
D, applying default values for the specification string, 'Fst,Fp,Ast,Ap'.

D = fdesign.highpass(SPEC) constructs object D and sets the
Specification property to SPEC. Entries in the SPEC string represent
various filter response features, such as the filter order, that govern
the filter design. Valid entries for SPEC are shown below. The strings
are not case sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'Fst,Fp,Ast,Ap' (default spec)

• 'N,F3db'

• 'N,F3db,Ap' *

• 'N,F3db,Ast' *

• 'N,F3db,Ast,Ap' *

• 'N,F3db,Fp *

• 'N,Fc'

• 'N,Fc,Ast,Ap'

• 'N,Fp,Ap'
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• 'N,Fp,Ast,Ap'

• 'N,Fst,Ast'

• 'N,Fst,Ast,Ap'

• 'N,Fst,F3db' *

• 'N,Fst,Fp'

• 'N,Fst,Fp,Ap' *

• 'N,Fst,Fp,Ast' *

• 'Nb,Na,Fst,Fp' *

The string entries are defined as follows:

• Ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• Ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

• F3db— cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• Fc — cutoff frequency for the point 6 dB point below the passband
value. Specified in normalized frequency units.

• Fp— frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• Fst— frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• N — filter order.

• Na and Nb are the order of the denominator and numerator.

Graphically, the filter specifications look similar to those shown in the
following figure.
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Regions between specification values like Fst and Fp are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a highpass filter specification
object change depending on the Specification string. Use
designmethods to determine which design method applies to an object
and its specification string.

Use designopts to determine which design options are valid for a
given design method. For detailed information on design options for a
given design method, METHOD, enter help(D,METHOD) at the MATLAB
command line.

D = fdesign.highpass(SPEC,specvalue1,specvalue2,...)
constructs an object d and sets its specification values at construction
time.

D = fdesign.highpass(specvalue1,specvalue2,specvalue3,
specvalue4) constructs an object D with the default Specification
property and the values you enter for specvalue1,specvalue2,....

D = fdesign.highpass(...,Fs) provides the sampling frequency for
the filter specification object. Fs is in Hz and must be specified as a
scalar trailing the other numerical values provided. If you specify a
sampling frequency, all other frequency specifications are in Hz.

D = fdesign.highpass(...,MAGUNITS) specifies the units for any
magnitude specification you provide in the input arguments. MAGUNITS
can be one of
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• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in dB (decibels)

• 'squared'— specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples Higpass filter a discrete-time signal consisting of two sine waves.

Create a highpass filter specification object. Specify the passband
frequency to be 0.25π radians/sample and the stopband frequency to be
0.15π radians/sample. Specify 1 dB of allowable passband ripple and
a stopband attenuation of 60 dB.

d = fdesign.highpass('Fst,Fp,Ast,Ap',0.15,0.25,60,1);

Query the valid design methods for your filter specification object, d.

designmethods(d)

Create an FIR equiripple filter and view the filter magnitude response
with fvtool.

Hd = design(d,'equiripple');
fvtool(Hd);

Create a signal consisting of the sum of two discrete-time sinusoids
with frequencies of π/8 and π/4 radians/sample and amplitudes of 1
and 0.25 respectively. Filter the discrete-time signal with the FIR
equiripple filter object, Hd

n = 0:159;
x = cos((pi/8)*n)+0.25*sin((pi/4)*n);
y = filter(Hd,x);
Domega = (2*pi)/160;
freq = 0:(2*pi)/160:pi;
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xdft = fft(x);
ydft = fft(y);
plot(freq,abs(xdft(1:length(x)/2+1)));
hold on;
plot(freq,abs(ydft(1:length(y)/2+1)),'r','linewidth',2);
legend('Original Signal','Lowpass Signal', ...
'Location','NorthEast');
ylabel('Magnitude'); xlabel('Radians/Sample');

Create a filter of order 10 with a 6-dB frequency of 9.6 kHz and a
sampling frequency of 48 kHz.

d=fdesign.highpass('N,Fc',10,9600,48000);
designmethods(d)
% only valid design method is FIR window method
Hd = design(d);
% Display filter magnitude response
fvtool(Hd);

If you have the DSP System Toolbox software, you can specify the shape
of the stopband and the rate at which the stopband decays.

Create two FIR equiripple filters with different linear stopband slopes.
Specify the passband frequency to be 0.3π radians/sample and the
stopband frequency to be 0.35π radians/sample. Specify 1 dB of
allowable passband ripple and a stopband attenuation of 60 dB. Design
one filter with a 20 dB/rad/sample stopband slope and another filter
with 40 dB/rad/sample.

D = fdesign.highpass('Fst,Fp,Ast,Ap',0.3,0.35,60,1);
Hd1 = design(D,'equiripple','StopBandShape','linear','StopBandDecay',20);
Hd2 = design(D,'equiripple','StopBandShape','linear','StopBandDecay',40);
hfvt = fvtool([Hd1 Hd2]);
legend(hfvt,'20 dB/rad/sample','40 dB/rad/sample');
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See Also design | designmethods | fdesign
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Purpose Hilbert filter specification object

Syntax d = fdesign.hilbert
d = fdesign.hilbert(specvalue1,specvalue2)
d = fdesign.hilbert(spec)
d = fdesign.hilbert(spec,specvalue1,specvalue2)
d = fdesign.hilbert(...,Fs)
d = fdesign.hilbert(...,MAGUNITS)

Description d = fdesign.hilbert constructs a default Hilbert filter designer d
with N, the filter order, set to 30 and TW, the transition width set to
0.1π radians/sample.

d = fdesign.hilbert(specvalue1,specvalue2) constructs a Hilbert
filter designer d assuming the default specification string 'N,TW'. You
input specvalue1 and specvalue2 for N and TW.

d = fdesign.hilbert(spec) initializes the filter designer
Specification property to spec. You provide one of the following
strings as input to replace spec. The specification strings are not case
sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'N,TW' default spec string.

• 'TW,Ap' *

The string entries are defined as follows:

• Ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• N — filter order.

• TW— width of the transition region between the pass and stop bands.
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By default, fdesign.hilbert assumes that all frequency specifications
are provided in normalized frequency units. Also, decibels is the default
for all magnitude specifications.

Different specification strings may have different design methods
available. Use designmethods(d) to get a list of the design methods
available for a given specification string.

d = fdesign.hilbert(spec,specvalue1,specvalue2) initializes the
filter designer specifications in spec with specvalue1, specvalue2,
and so on. To get a description of the specifications specvalue1 and
specvalue2, enter

get(d,'description')

at the Command prompt.

d = fdesign.hilbert(...,Fs) adds the argument Fs, specified in Hz
to define the sampling frequency. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.hilbert(...,MAGUNITS) specifies the units for any
magnitude specification you provide in the input arguments. MAGUNITS
can be one of

• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in dB (decibels)

• 'squared'— specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples Design a Hilbert transformer of order 30 with a transition width
of 0.2π radians/sample. Plot the zero phase response from [-π,π)
radians/sample and the impulse response.

d = fdesign.hilbert('N,TW',30,0.2);
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% Show available design methods
designmethods(d)
% Use least square minimization to obtain linear-phase FIR filter
Hd = design(d,'equiripple');
% Display zero phase response from [-pi,pi)
fvtool(Hd,'magnitudedisplay','zero-phase',...
'frequencyrange','[-pi, pi)')

The impulse response of this even order filter is antisymmetric (type
III).
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fvtool(Hd,'analysis','impulse')

Apply the filter to a discrete-time sinusoid with a frequency of π/2
radians/sample.

n = 0:99;
x = cos(pi/2*n);
y = filter(Hd,x);
% Correct for the filter delay
Delay = floor(length(Hd.Numerator)/2);
y = y(Delay+1:end);
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Plot a the filter input and output and validate the approximate π/2
phase shift obtained with the Hilbert transformer.

stem(x(1:end-Delay),'markerfacecolor',[0 0 1]);
hold on;
stem(y,'Color',[1 0 0],'markerfacecolor',[1 0 0]);
axis([10 20 -1.5 1.5]); grid on;
xlabel('Samples'); ylabel('Amplitude');
legend('Input','Output','Location','NorthWest')
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Because the frequency of the discrete-time sinusoid is π/2
radians/sample, a one sample shift corresponds to a phase shift of π/2.

Form the analytic signal and demonstrate that the frequency content of
the analytic signal is zero for negative frequencies and approximately
twice the spectrum of the input for positive frequencies.

x1 = x(1:end-Delay);
% Form the analytic signal
xa = x1+1j*y;
freq = -pi:(2*pi)/length(x1):pi-(2*pi)/length(x);
plot(freq,abs(fftshift(fft(x1))));
hold on;
plot(freq,abs(fftshift(fft(xa))),'r'); grid on;
xlabel('Radians/Sample'); ylabel('Magnitude');
legend('Input DFT','Analytic Signal DFT','Location','NorthWest');
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Design a minimum-order Hilbert transformer that has a sampling
frequency of 1 kHz. Specify the passband ripple to be 1 dB.

d = fdesign.hilbert('TW,Ap',1,0.1,1e3);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase', ...
'frequencyrange','[-Fs/2, Fs/2)');
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See Also design | fdesign | setspecs
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Purpose Lowpass filter specification

Syntax D = fdesign.lowpass
D = fdesign.lowpass(SPEC)
D = fdesign.lowpass(SPEC,specvalue1,specvalue2,...)
D = fdesign.lowpass(specvalue1,specvalue2,specvalue3,

specvalue4)
D = fdesign.lowpass(...,Fs)
D = fdesign.lowpass(...,MAGUNITS)

Description D = fdesign.lowpass constructs a lowpass filter specification
object D, applying default values for the default specification string
'Fp,Fst,Ap,Ast'.

D = fdesign.lowpass(SPEC) constructs object D and sets the
Specification property to the string in SPEC. Entries in the SPEC
string represent various filter response features, such as the filter
order, that govern the filter design. Valid entries for SPEC are shown
below. The strings are not case sensitive.

Note Specifications strings marked with an asterisk require the DSP
System Toolbox software.

• 'Fp,Fst,Ap,Ast' (default spec)

• 'N,F3db'

• 'N,F3db,Ap' *

• 'N,F3db,Ap,Ast' *

• 'N,F3db,Ast' *

• 'N,F3db,Fst' *

• 'N,Fc'

• "N,Fc,Ap,Ast'
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• 'N,Fp,Ap'

• 'N,Fp,Ap,Ast'

• 'N,Fp,Fst,Ap' *

• 'N,Fp,F3db' *

• 'N,Fp,Fst'

• 'N,Fp,Fst,Ast' *

• 'N,Fst,Ap,Ast' *

• 'N,Fst,Ast'

• 'Nb,Na,Fp,Fst' *

The string entries are defined as follows:

• Ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• Ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

• F3db— cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• Fc — cutoff frequency for the point 6 dB point below the passband
value. Specified in normalized frequency units.

• Fp— frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• Fst— frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• N — filter order.

• Na and Nb are the order of the denominator and numerator.

Graphically, the filter specifications look similar to those shown in the
following figure.
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Regions between specification values like Fp and Fst are transition
regions where the filter response is not explicitly defined.

D = fdesign.lowpass(SPEC,specvalue1,specvalue2,...) constructs
an object D and sets the specification values at construction time using
specvalue1, specvalue2, and so on for all of the specification variables
in SPEC.

D =
fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4)
constructs an object D with values for the default
Specification property string 'Fp,Fst,Ap,Ast' using
the specifications you provide as input arguments
specvalue1,specvalue2,specvalue3,specvalue4.

D = fdesign.lowpass(...,Fs) adds the argument Fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

D = fdesign.lowpass(...,MAGUNITS) specifies the units for any
magnitude specification you provide in the input arguments. MAGUNITS
can be one of

• 'linear' — specify the magnitude in linear units

• 'dB' — specify the magnitude in dB (decibels)

• 'squared'— specify the magnitude in power units
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When you omit the MAGNUNITS argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples Lowpass filter a discrete-time signal consisting of two sine waves.

Create a lowpass filter specification object. Specify the passband
frequency to be 0.15π radians/sample and the stopband frequency to be
0.25π radians/sample. Specify 1 dB of allowable passband ripple and
a stopband attenuation of 60 dB.

d=fdesign.lowpass('Fp,Fst,Ap,Ast',0.15,0.25,1,60);

Query the valid design methods for your filter specification object, d.

designmethods(d)

Create an FIR equiripple filter and view the filter magnitude response
with fvtool.

Hd = design(d,'equiripple');
fvtool(Hd);

Create a signal consisting of the sum of two discrete-time sinusoids
with frequencies of π/8 and π/4 radians/sample and amplitudes of 1
and 0.25 respectively. Filter the discrete-time signal with the FIR
equiripple filter object, Hd.

n = 0:159;
x = 0.25*cos((pi/8)*n)+sin((pi/4)*n);
y = filter(Hd,x);
Domega = (2*pi)/160;
freq = 0:(2*pi)/160:pi;
xdft = fft(x);
ydft = fft(y);
plot(freq,abs(xdft(1:length(x)/2+1)));
hold on;
plot(freq,abs(ydft(1:length(y)/2+1)),'r','linewidth',2);
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legend('Original Signal','Highpass Signal', ...
'Location','NorthEast');
ylabel('Magnitude'); xlabel('Radians/Sample');

Create a filter of order 10 with a 6-dB frequency of 9.6 kHz and a
sampling frequency of 48 kHz.

d=fdesign.lowpass('N,Fc',10,9600,48000);
designmethods(d)
% only valid design method is FIR window method
Hd = design(d);
% Display filter magnitude response
fvtool(Hd);

Zoom in on the magnitude response to verify that the -6 dB point is
at 9.6 kHz.

If you have the DSP System Toolbox software, you can specify the
shape of the stopband and the rate at which the stopband decays. The
following example requires the DSP System Toolbox.

Create an FIR equiripple filter with a passband frequency of 0.2π
radians/sample, a stopband frequency of 0.25π radians/sample, a
passband ripple of 1 dB, and a stopband attenuation of 60 dB. Design
the filter with a 20 dB/rad/sample linear stopband.

D = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.25,1,60);
Hd = design(D,'equiripple','StopBandShape','linear','StopBandDecay',20);
fvtool(Hd);

See Also design | designmethods | fdesign
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Purpose Pulse-shaping filter specification object

Syntax D = fdesign.pulseshaping
D = fdesign.pulseshaping(sps)
D = fdesign.pulseshaping(sps,shape)
d = fdesign.pulseshaping(sps,shape,spec,value1,value2,...)
d = fdesign.pulseshaping(...,fs)
d = fdesign.pulseshaping(...,magunits)

Description D = fdesign.pulseshaping constructs a specification object D, which
can be used to design a minimum-order raised cosine filter object with a
default stop band attenuation of 60dB and a rolloff factor of 0.25.

D = fdesign.pulseshaping(sps) constructs a minimum-order raised
cosine filter specification object d with a positive integer-valued
oversampling factor, SamplesPerSymbol .

D = fdesign.pulseshaping(sps,shape) constructs d where shape
specifies the PulseShape property. Valid entries for shape are:

• 'Raised Cosine'

• 'Square Root Raised Cosine'

• 'Gaussian'

d = fdesign.pulseshaping(sps,shape,spec,value1,value2,...)
constructs d where spec defines the Specification properties. The
string entries for spec specify various properties of the filter, including
the order and frequency response. Valid entries for spec depend upon
the shape property. For 'Raised Cosine' and 'Square Root Raised
Cosine' filters, the valid entries for spec are:

• 'Ast,Beta' (minimum order; default)

• 'Nsym,Beta'

• 'N,Beta'

The string entries are defined as follows:
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• Ast—stopband attenuation (in dB). The default stopband attenuation
for a raised cosine filter is 60 dB. The default stopband attenuation
for a square root raised cosine filter is 30 dB. If Ast is specified, the
minimum-order filter is returned.

• Beta—rolloff factor expressed as a real-valued scalar ranging from 0
to 1. Smaller rolloff factors result in steeper transitions between the
passband and stopband of the filter.

• Nsym —filter order in symbols. The length of the impulse
response is given by Nsym*SamplesPerSymbol+1. The product
Nsym*SamplesPerSymbol must be even.

• N —filter order (must be even). The length of the impulse response
is N+1.

If the shape property is specified as 'Gaussian', the valid entries for
spec are:

• 'Nsym,BT' (default)

The string entries are defined as follows:

• Nsym—filter order in symbols. Nsym defaults to 6. The length of the
filter impulse response is Nsym*SamplesPerSymbol+1. The product
Nsym*SamplesPerSymbol must be even.

• BT —the 3–dB bandwidth-symbol time product. BT is a positive
real-valued scalar, which defaults to 0.3. Larger values of BT produce
a narrower pulse width in time with poorer concentration of energy
in the frequency domain.

d = fdesign.pulseshaping(...,fs) specifies the sampling frequency
of the signal to be filtered. fs must be specified as a scalar trailing the
other numerical values provided. For this case, fs is assumed to be in
Hz and is used for analysis and visualization.

d = fdesign.pulseshaping(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. Valid
entries for magunits are:

• linear — specify the magnitude in linear units
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• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

After creating the specification object d, you can use the design function
to create a filter object such as h in the following example:

d = fdesign.pulseshaping(8,'Raised Cosine','Nsym,Beta',6,0.25);

h = design(d);

Normally, the Specification property of the specification object
also determines which design methods you can use when you
create the filter object. Currently, regardless of the Specification
property, the design function uses the window design method with
all fdesign.pulseshaping specification objects. The window method
creates an FIR filter with a windowed impulse response.

Examples

Pulse-shaping can be used to change the waveform of transmitted pulses
so the signal bandwidth matches that of the communication channel.
This helps to reduce distortion and intersymbol interference (ISI).

This example shows how to design a minimum-order raised cosine filter
that provides a stop band attenuation of 60 dB, rolloff factor of 0.50,
and 8 samples per symbol.

h = fdesign.pulseshaping(8,'Raised Cosine','Ast,Beta',60,0.50);

Hd = design(h);

fvtool(Hd)

This code generates the following figure.
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This example shows how to design a raised cosine filter that spans 8
symbol durations (i.e., of order 8 symbols), has a rolloff factor of 0.50,
and oversampling factor of 10.

h = fdesign.pulseshaping(10,'Raised Cosine','Nsym,Beta',8,0.50);
Hd = design(h);
fvtool(Hd, 'impulse')
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This example shows how to design a square root raised cosine filter of
order 42, rolloff factor of 0.25, and 10 samples per symbol.

h = fdesign.pulseshaping(10,'Square Root Raised Cosine','N,Beta',42);
Hd = design(h);
fvtool(Hd, 'impulse')

The following example demonstrates how to create a Gaussian
pulse-shaping filter with an oversampling factor (sps) of 10, a
bandwidth-time symbol product of 0.2, and 8 symbol periods. The
sampling frequency is specified as 10 kHz.
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Purpose FFT-based FIR filtering using overlap-add method

Syntax y = fftfilt(b,x)
y = fftfilt(b,x,n)
y = fftfilt(gpuArrayb,gpuArrayX,n)

Description fftfilt filters data using the efficient FFT-based method of
overlap-add, a frequency domain filtering technique that works only
for FIR filters.

y = fftfilt(b,x) filters the data in vector x with the filter described
by coefficient vector b. It returns the data vector y. The operation
performed by fftfilt is described in the time domain by the difference
equation:

y n b x n b x n b nb x n nb( ) ( ) ( ) ( ) ( ) ( ) ( )= + − + + + −1 2 1 1

An equivalent representation is the z-transform or frequency domain
description:

Y z b b z b nb z X znb( ) ( ) ( ) ( ) ( )= + + + +( )− −1 2 11 

By default, fftfilt chooses an FFT length and data block length that
guarantee efficient execution time.

If x is a matrix, fftfilt filters its columns. If b is a matrix, fftfilt
applies the filter in each column of b to the signal vector x. If b and x
are both matrices with the same number of columns, the i-th column of
b is used to filter the i-th column of x.

y = fftfilt(b,x,n) uses n to determine the length of the FFT. See
“Algorithms” on page 1-361 for information.

y = fftfilt(gpuArrayb,gpuArrayX,n) filters the data in the
gpuArray object, gpuArrayX, with the FIR filter coefficients
in the gpuArray, gpuArrayb. See “Use gpuArray Data” for
details on gpuArray objects. Using fftfilt with gpuArray
objects requires Parallel Computing Toolbox software and a
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CUDA-enabled NVIDIA GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details. The filtered data, y, is a gpuArray object. See “Overlap-Add
Filtering on the GPU” on page 1-361 for example of overlap-add
filtering on the GPU.

fftfilt works for both real and complex inputs.

Comparison to filter function

When the input signal is relatively large, it is advantageous to use
fftfilt instead of filter, which performs N multiplications for each
sample in x, where N is the filter length. fftfilt performs 2 FFT
operations — the FFT of the signal block of length L plus the inverse
FT of the product of the FFTs — at the cost of

1/2*L*log2(L)

where L is the block length. It then performs L pointwise multiplications
for a total cost of

L+L*log2(L) = L*(1+log2(L))

multiplications. The cost ratio is therefore

L*(1+log2(L))/(N*L) = (1+log2(L))/N

which is approximately log2(L)/N.

Therefore, fftfilt becomes advantageous when log2(L) is less than N.

Examples Show that the results from fftfilt and filter are identical:

b = [1 2 3 4];
x = [1 zeros(1,99)]';
norm(fftfilt(b,x) - filter(b,1,x))
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Overlap-Add Filtering on the GPU

The following example requires Parallel Computing
Toolbox software and a CUDA-enabled NVIDIA
GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details.

Create a signal consisting of a sum of sine waves in white Gaussian
additive noise. The sine wave frequencies are 2.5, 5, 10, and 15 kHz.
The sampling frequency is 50 kHz.

Fs = 50e3;
t = 0:1/Fs:10-(1/Fs);
x = cos(2*pi*2500*t)+0.5*sin(2*pi*5000*t)+0.25*cos(2*pi*10000*t)+0.125

Design a lowpass FIR equiripple filter using fdesign.lowpass.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',5500,6000,0.5,50,50e3);
Hd = design(d);
B = Hd.Numerator;

Filter the data on the GPU using the overlap-add method. Put the
data on the GPU using gpuArray. Return the output to the MATLAB
workspace using gather and plot the power spectral density estimate
of the filtered data.

y = fftfilt(gpuArray(B),gpuArray(x));
periodogram(gather(y),rectwin(length(y)),length(y),50e3);

Algorithms fftfilt uses fft to implement the overlap-add method [1], a technique
that combines successive frequency domain filtered blocks of an input
sequence. fftfilt breaks an input sequence x into length L data
blocks, where L must be greater than the filter length N.

and convolves each block with the filter b by
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y = ifft(fft(x(i:i+L-1),nfft).*fft(b,nfft));

where nfft is the FFT length. fftfilt overlaps successive output
sections by n-1 points, where n is the length of the filter, and sums them.

fftfilt chooses the key parameters L and nfft in different ways,
depending on whether you supply an FFT length n and on the lengths
of the filter and signal. If you do not specify a value for n (which
determines FFT length), fftfilt chooses these key parameters
automatically:

• If length(x)is greater than length(b), fftfilt chooses values that
minimize the number of blocks times the number of flops per FFT.

• If length(b) is greater than or equal to length(x), fftfilt uses a
single FFT of length

2^nextpow2(length(b) + length(x) - 1)

This essentially computes

y = ifft(fft(B,nfft).*fft(X,nfft))

If you supply a value for n, fftfilt chooses an FFT length, nfft, of
2^nextpow2(n)and a data block length of nfft - length(b) + 1. If n is
less than length(b), fftfilt sets n to length(b).

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing, Prentice-Hall, 1989.

See Also conv | dfilt.fftfir | filter | filtfilt
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Purpose Filter data with recursive (IIR) or nonrecursive (FIR) filter

Description filter is a MATLAB function.

Signal-Specific
Information

Filter Method of DFILT

Filter is also an overloaded method of the discrete-time filter object
(dfilt). You can pass an object handle, data, and optionally, the
dimension into the filter method.

The MATLAB filter function describes a zi input for initial conditions.
Note that the recommended way of passing initial conditions into a
dfilt is by using the states property. For more information, see the
dfilt reference page.

Filter Normalization

Using the filter function on b and a coefficients normalizes the filter
by forcing the a0 coefficient to be equal to 1.

Using the filter method on a dfilt object does not normalize the a0
coefficient.

FIR Filters

The denominator of FIR filters is, by definition, equal to 1. To use
the filter function with the b coefficients from an FIR function, use
y = filter(b,1,x) .
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Purpose GUI-based filter design

Syntax filterbuilder(h)
filterbuilder('response')

Description filterbuilder starts a GUI-based tool for building filters. It relies
on the fdesign object-object oriented filter design paradigm, and is
intended to reduce development time during the filter design process.
filterbuilder uses a specification-centered approach to find the best
algorithm for the desired response.

Note You must have the Signal Processing Toolbox installed to use
fdesign and filterbuilder. Some of the features described below
may be unavailable if your installation does not additionally include the
DSP System Toolbox. You can verify the presence of both toolboxes by
typing ver at the command prompt.

The filterbuilder GUI contains many features not available in
FDATool. For more information on how to use filterbuilder, see
“Filterbuilder Design Process”“Filterbuilder Design Process”.

To use filterbuilder, enter filterbuilder at the MATLAB command
line using one of three approaches:

• Simply enter filterbuilder. MATLAB opens a dialog for you to
select a filter response type. After you select a filter response type,
filterbuilder launches the appropriate filter design dialog box.

• Enter filterbuilder(h), where h is an existing filter object. For
example, if h is a bandpass filter, filterbuilder(h) opens the
bandpass filter design dialog box. (The h object must have been
created using filterbuilder or must be a dfilt ,mfilt, or filter
System object created using fdesign.)
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Note You must have the DSP System Toolbox software to create
and import filter System objects.

• Enter filterbuilder('response'), replacing response with a
response string from the following table. MATLAB opens a filter
design dialog that corresponds to the response string.

Note You must have the DSP System Toolbox software to implement
a number of the filter designs listed in the following table. If you only
have the Signal Processing Toolbox software, you can design a limited
set of the following filter-response types.

Response String Description of
Resulting Filter
Design

Filter Object

arbgrpdelay Arbitrary group delay
filter design

fdesign.arbgrpdelay

arbmag Arbitrary magnitude
filter design

fdesign.arbmag

arbmagnphase Arbitrary response
filter (magnitude and
phase)

fdesign.arbmagnphase

audioweighting Audio weighting filter fdesign.audioweighting

bandpass or bp Bandpass filter fdesign.bandpass

bandstop or bs Bandstop filter fdesign.bandstop

cic CIC filter fdesign.decimator(M,'cic',...
or
fdesign.interpolator(L,'cic',
See
fdesign.decimator
and
fdesign.interpolator

ciccomp CIC compensator fdesign.ciccomp

comb Comb filter fdesign.comb
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Response String Description of
Resulting Filter
Design

Filter Object

diff Differentiator filter fdesign.differentiator

fracdelay Fractional delay filter fdesign.fracdelay

halfband or hb Halfband filter fdesign.halfband

highpass or hp Highpass filter fdesign.highpass

hilb Hilbert filter fdesign.hilbert

isinc,
isinclp, or
isinchp

Inverse sinc lowpass
or highpass filter

fdesign.isinclp
and
fdesign.isinchp

lowpass or lp Lowpass filter
(default)

fdesign.lowpass

notch Notch filter fdesign.notch

nyquist Nyquist filter fdesign.nyquist

octave Octave filter fdesign.octave

parameq Parametric equalizer
filter

fdesign.parameq

peak Peak filter fdesign.peak

pulseshaping Pulse-shaping filter fdesign.pulseshaping

Note Because they do not change the filter structure, the
magnitude specifications and design method are tunable when using
filterbuilder.
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Filterbuilder Design Panes

Main Design Pane

The main pane of filterbuilder varies depending on the filter response
type, but the basic structure is the same. The following figure shows
the basic layout of the dialog box.

As you choose the response for the filter, the available options and
design parameters displayed in the dialog box change. This display
allows you to focus only on parameters that make sense in the context
of your filter design.
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Every filter design dialog box includes the options displayed at the top
of the dialog box, shown in the following figure.

• Save variable as—When you click Apply to apply your changes or
OK to close this dialog box, filterbuilder saves the current filter to
your MATLAB workspace as a filter object with the name you enter.

• View Filter Response — Displays the magnitude response for the
current filter specifications and design method by opening the Filter
Visualization Tool (fvtool).

Note The filterbuilder dialog box includes an Apply option. Each
time you click Apply, filterbuilder writes the modified filter to your
MATLAB workspace. This modified filter has the variable name you
assign in Save variable as. To apply changes without overwriting the
variable in you workspace, change the variable name in Save variable
as before you click Apply.

There are three tabs in the Filterbuilder dialog box, containing three
panes: Main, Data Types, and Code Generation. The first pane
changes according to the filter being designed. The last two panes are
the same for all filters. These panes are discussed in the following
sections.

Data Types Pane

The second tab in the Filterbuilder dialog box is shown in the following
figure.
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The Arithmetic drop down box allows the choice of Double precision,
Single precision, or Fixed point. Some of these options may be
unavailable depending on the filter parameters. The following table
describes these options.

Arithmetic List
Entry

Effect on the Filter

Double precision All filtering operations and coefficients use
double-precision, floating-point representations
and math. When you use filterbuilder to
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Arithmetic List
Entry

Effect on the Filter

create a filter, double precision is the default
value for the Arithmetic property.

Single precision All filtering operations and coefficients use
single-precision floating-point representations
and math.

Fixed point This string applies selected default values,
typically used on many digital processors, for
the properties in the fixed-point filter. These
properties include coefficient word lengths,
fraction lengths, and various operating modes.
This setting allows signed fixed data types only.
Fixed-point filter design with filterbuilder
is available only when you install Fixed-Point
Designer™ software along with DSP System
Toolbox software.

The following figure shows the Data Types pane after you select Fixed
point for Arithmetic and set Filter internals to Specify precision.
This figure shows the Data Types pane for the case where the Use a
System object to implement filter check box is not selected in the
Main pane.
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Input signal
Specify the format the filter applies to data to be filtered. For all
cases, filterbuilder implements filters that use binary point
scaling and signed input. You set the word length and fraction
length as needed.

Coefficients
Choose how you specify the word length and the fraction length of
the filter numerator and denominator coefficients:

• Specify word length enables you to enter the word length
of the coefficients in bits. In this mode, filterbuilder
automatically sets the fraction length of the coefficients to
the binary-point only scaling that provides the best possible
precision for the value and word length of the coefficients.

• Binary point scaling enables you to enter the word
length and the fraction length of the coefficients in bits. If
applicable, enter separate fraction lengths for the numerator
and denominator coefficients.

• The filter coefficients do not obey the Rounding mode and
Overflow mode parameters that are available when you select
Specify precision from the Filter internals list. Coefficients
are always saturated and rounded to Nearest.

Section Input
Choose how you specify the word length and the fraction length of
the fixed-point data type going into each section of an SOS filter.
This parameter is visible only when the selected filter structure is
IIR and SOS.

• Binary point scaling enables you to enter the word and
fraction lengths of the section input in bits.

• Specify word length enables you to enter the word lengths
in bits.

Section Output
Choose how you specify the word length and the fraction length
of the fixed-point data type coming out of each section of an SOS
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filter. This parameter is visible only when the selected filter
structure is IIR and SOS.

• Binary point scaling enables you to enter the word and
fraction lengths of the section output in bits.

• Specify word length enables you to enter the output word
lengths in bits.

State
Contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. Use this parameter to specify how to designate the state
word and fraction lengths. This parameter is not visible for direct
form and direct form I filter structures because filterbuilder
deduces the state directly from the input format. States always
use signed representation:

• Binary point scaling enables you to enter the word length
and the fraction length of the accumulator in bits.

• Specify precision enables you to enter the word length and
fraction length in bits (if available).

Product
Determines how the filter handles the output of product
operations. Choose from the following options:

• Full precision— Maintain full precision in the result.

• Keep LSB — Keep the least significant bit in the result when
you need to shorten the data words.

• Specify Precision — Enables you to set the precision (the
fraction length) used by the output from the multiplies.

Filter internals
Specify how the fixed-point filter performs arithmetic operations
within the filter. The affected filter portions are filter products,
sums, states, and output. Select one of these options:
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• Full precision — Specifies that the filter maintains full
precision in all calculations for products, output, and in the
accumulator.

• Specify precision — Set the word and fraction lengths
applied to the results of product operations, the filter output,
and the accumulator. Selecting this option enables the word
and fraction length controls.

Signed
Selecting this option directs the filter to use signed representations
for the filter coefficients.

Word length
Sets the word length for the associated filter parameter in bits.

Fraction length
Sets the fraction length for the associate filter parameter in bits.

Accum
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths.

Determines how the accumulator outputs stored values. Choose
from the following options:

• Full precision—Maintain full precision in the accumulator.

• Keep MSB— Keep the most significant bit in the accumulator.

• Keep LSB — Keep the least significant bit in the accumulator
when you need to shorten the data words.

• Specify Precision — Enables you to set the precision (the
fraction length) used by the accumulator.

Output
Sets the mode the filter uses to scale the output data after
filtering. You have the following choices:

• Avoid Overflow— Set the output data fraction length to avoid
causing the data to overflow. Avoid overflow is considered
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the conservative setting because it is independent of the input
data values and range.

• Best Precision — Set the output data fraction length to
maximize the precision in the output data.

• Specify Precision — Set the fraction length used by the
filtered data.

Fixed-point operational parameters
Parameters in this group control how the filter rounds fixed-point
values and how it treats values that overflow.

Rounding mode
Sets the mode the filter uses to quantize numeric values when
the values lie between representable values for the data format
(word and fraction lengths).

• ceil - Round toward positive infinity.

• convergent - Round to the closest representable integer. Ties
round to the nearest even stored integer. This is the least
biased of the methods available in this software.

• zero/fix - Round toward zero.

• floor - Round toward negative infinity.

• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects everything except coefficient values
and input data which always round. In most cases, products do
not overflow—they maintain full precision.

Overflow mode
Sets the mode the filter uses to respond to overflow conditions in
fixed-point arithmetic. Choose from the following options:
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• Saturate— Limit the output to the largest positive or negative
representable value.

• Wrap — Set overflowing values to the nearest representable
value using modular arithmetic.

The choice you make affects everything except coefficient values
and input data which always round. In most cases, products do
not overflow—they maintain full precision.

Cast before sum
Specifies whether to cast numeric data to the appropriate
accumulator format before performing sum operations. Selecting
Cast before sum ensures that the results of the affected sum
operations match most closely the results found on most digital
signal processors. Performing the cast operation before the
summation adds one or two additional quantization operations
that can add error sources to your filter results.

If you clear Cast before sum, the filter prevents the addends
from being cast to the sum format before the addition operation.
Choose this setting to get the most accurate results from
summations without considering the hardware your filter might
use. The input format referenced by Cast before sum depends
on the filter structure you are using.

The effect of clearing or selecting Cast before sum is as follows:

• Cleared — Configures filter summation operations to retain the
addends in the format carried from the previous operation.

• Selected — Configures filter summation operations to convert
the input format of the addends to match the summation
output format before performing the summation operation.
Usually, selecting Cast before sum generates results from the
summation that more closely match those found from digital
signal processors.
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Code Generation Pane

The code generation pane contains options for various implementations
of the completed filter design. Depending on your installation, you can
generate MATLAB, VHDL, and Verilog code from the designed filter.
You can also choose to create or update a Simulink model from the
designed filter. The following section explains these options.
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HDL
For more information on this option, see “Opening the Filter
Design HDL Coder™ GUI From the filterbuilder GUI”.

MATLAB
Generate MATLAB code based on filter specifications

• Generate function that returns your filter as an output

Selecting this option generates a function that designs either a
DFILT/MFILT object or a system object (depending on whether
you have selected the Use a System object to implement
the filter check box) using fdesign. The function call returns
a filter object.

• Generate function that filters your data

Selecting this option generates a function that takes data as
input, and outputs data filtered with the designed filter.

Clicking on the Generate MATLAB code button, brings up a
Save File dialog. Specify the file name and location, and save. The
filter is now contained in an editable file.

Simulink Model
Generate Simulink blocks and subsystems from your
designed filters

When the Use a System object to implement filter check box
is selected in the Main pane, you are able to generate Simulink
models as long as the Arithmetic is not set to Fixed point in
the Data Types pane. If the Arithmetic is set to Fixed point,
the Generate Model button in the Simulink model panel will
be disabled.

Clicking on the Generate Model button brings up the Export to
Simulink dialog box, as shown in the following figure.
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You can set the following parameters in this dialog box:

• Block Name— The name for the new subsystem block, set to
Filter by default.

• Destination — Current saves the generated model to the
current Simulink model; New creates a new model to contain
the generated block; User Defined creates a new model or
subsystem to the user-specified location enumerated in the
User Defined text box.

• Overwrite generated ’Filter’ block — When this check
box is selected, DSP System Toolbox software overwrites an
existing block with the name specified in Block Name; when
cleared, creates a new block with the same name.

• Build model using basic elements—When this check box is
selected, DSP System Toolbox software builds the model using
only basic blocks.

• Optimize for zero gains— When this check box is selected,
DSP System Toolbox software removes all zero gain blocks
from the model.
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• Optimize for unity gains—When this check box is selected,
DSP System Toolbox software replaces all unity gains with
direct connections.

• Optimize for negative gains — When this check box is
selected, DSP System Toolbox software removes all negative
unity gain blocks, and changes sign at the nearest summation
block.

• Optimize delay chains — When this check box is selected,
DSP System Toolbox software replaces delay chains made up
of n unit delays with a single delay by n.

• Optimize for unity scale values — When this check box is
selected, DSP System Toolbox software removes all scale value
multiplications by 1 from the filter structure.

• Input processing— Specify how the generated filter block or
subsystem block processes the input. Depending on the type
of filter you are designing, one or both of the following options
may be available:

— Columns as channels (frame based)— When you select
this option, the block treats each column of the input as a
separate channel.

— Elements as channels (sample based) — When you
select this option, the block treats each element of the input
as a separate channel.

For more information about sample- and frame-based
processing, see “Sample- and Frame-Based Concepts”.

• Realize Model — DSP System Toolbox software builds the
model with the set parameters.

Filter
Responses

Select your filter response from the filterbuilder Response
Selection main menu.

If you have the DSP System Toolbox software, the following Response
Selection menu appears.
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Select your desired filter response from the menu and design your filter.

The following sections describe the options available for each response
type.
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Arbitrary Response Filter Design Dialog Box — Main Pane

1-382



filterbuilder

Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
This dialog only applies if you have the DSP System Toolbox
software. Select either FIR or IIR from the drop down list, where
FIR is the default impulse response. When you choose an impulse
response, the design methods and structures you can use to
implement your filter change accordingly. Arbitrary group delay
designs are only available if Impulse response is IIR. Without
the DSP System Toolbox, the only available arbitrary response
filter design is FIR.

Order mode
This dialog only applies if you have the DSP System Toolbox
software. Choose Minimum or Specify. Choosing Specify enables
the Order dialog.

Order
This dialog only applies when Order mode is Specify. For an
FIR design, specify the filter order. For an IIR design, you can
specify an equal order for the numerator and denominator, or
you can specify different numerator and denominator orders.
The default is equal orders. To specify a different denominator
order, check the Denominator order box. Because the Signal
Processing Toolbox only supports FIR arbitrary-magnitude filters,
you do not have the option to specify a denominator order.

Denominator order
Select the check box and enter the denominator order. This option
is enabled only if IIR is selected for Impulse response.

Filter type
This dialog only applies if you have the DSP System Toolbox
software and is only available for FIR filters. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your
choice determines the type of filter as well as the design methods
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and structures that are available to implement your filter. By
default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or interpolator, the resulting
filter is a bandpass filter that either decimates or interpolates
your input signal.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2 for Decimator and 3 for Sample-rate
converter.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Response Specification

Number of Bands
Select the number of bands in the filter. Multiband design is
available for both FIR and IIR filters.

Specify response as:
Specify the response as Amplitudes, Magnitudes and phase,
Frequency response, or Group delay. Amplitudes is the only
option if you do not have the DSP System Toolbox software. Group
delay is only available for IIR designs.

Frequency units
Specify frequency units as either Normalized, Hz, kHz, MHz, or GHz.
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Input Fs
Enter the input sampling frequency in the units specified in the
Frequency units drop-down box. This option is enabled when
Frequency units is set to an option in hertz.

Band Properties

These properties are modified automatically depending on the
response chosen in the Specify response as drop-down box. Two or
three columns are presented for input. The first column is always
Frequencies. The other columns are either Amplitudes, Magnitudes,
Phases, or Frequency Response. Enter the corresponding vectors of
values for each column.

• Frequencies and Amplitudes — These columns are presented
for input if you select Amplitudes in the Specify response as
drop-down box.

• Frequencies, Magnitudes, and Phases — These columns are
presented for input if the response chosen in the Specify response
as drop-down box is Magnitudes and phases.

• Frequencies and Frequency response — These columns are
presented for input if the response chosen in the Specify response
as drop-down box is Frequency response.

Algorithm

The options for each design are specific for each design method. In the
arbitrary response design, the available options also depend on the
Response specifications. This section does not present all of the
available options for all designs and design methods.

Design Method
Select the design method for the filter. Different methods are
enabled depending on the defining parameters entered in the
previous sections.
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Design Options

• Window — Valid when the Design method is Frequency
Sampling. Replace the square brackets with the name of a
window function or function handle. For example, 'hamming' or
@hamming. If the window function takes parameters other than
the length, use a cell array. For example, {`kaiser',3.5} or
{@chebwin,60}.

• Density factor — Valid when the Design method is
equiripple. Density factor controls the density of the
frequency grid over which the design method optimization
evaluates your filter response function. The number of equally
spaced points in the grid is the value you enter for Density
factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents
a reasonable trade between the accurate approximation to the
ideal filter and the time to design the filter.

The default changes to 20 for an IIR arbitrary group delay
design.

• Phase constraint — Valid when the Design method is
equiripple, you have the DSP System Toolbox installed, and
Specify response as is set to Amplitudes. Choose one of
Linear, Minimum, or Maximum.

• Weights—Uses the weights inWeights to weight the error for
a single-band design. If you have multiple frequency bands, the
Weights design option changes to B1 Weights, B2 Weights
to designate the separate bands. Use Bi Weights to specify
weights for the i-th band. The Bi Weights design option is only
available when you specify the i-th band as an unconstrained.

• Bi forced frequency point — This option is only available
in a multi-band constrained equiripple design when Specify
response as is Amplitudes. Bi forced frequency point is
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the frequency point in the i-th band at which the response is
forced to be zero. The index i corresponds to the frequency
bands in Band properties. For example, if you specify two
bands in Band properties, you have B1 forced frequency
point and B2 forced frequency point.

• Norm — Valid only for IIR arbitrary group delay designs.
Norm is the norm used in the optimization. The default value
is 128, which essentially equals the L-infinity norm. The norm
must be even.

• Max pole radius — Valid only for IIR arbitrary group delay
designs. Constrains the maximum pole radius. The default
is 0.999999. Reducing the Max pole radius can produce a
transfer function more resistant to quantization.

• Init norm— Valid only for IIR arbitrary group delay designs.
The initial norm used in the optimization. The default initial
norm is 2.

• Init numerator — Specifies an initial estimate of the filter
numerator coefficients.

• Init denominator — Specifies an initial estimate of the
filter denominator coefficients. This may be useful in difficult
optimization problems. In allpass filters, you only have to
specify either the denominator or numerator coefficients. If
you specify the denominator coefficients, you can obtain the
numerator coefficients.

Filter implementation

Structure
Select the structure for the filter. The available filter structures
depend on the parameters you select for your filter.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
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off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.

Audio Weighting Filter Design Dialog Box — Main Pane
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Filter specifications

• Weighting type — The weighting type defines the frequency
response of the filter. The valid weighting types are: A, C
, C-message, ITU-T 0.41, and ITU-R 468–4 weighting. See
fdesign.audioweighting for definitions of the weighting types.

• Class — Filter class is only applicable for A weighting and C
weighting filters. The filter class describes the frequency-dependent
tolerances specified in the relevant standards. There are two
possible class values: 1 and 2. Class 1 weighting filters have stricter
tolerances than class 2 filters. The filter class value does not affect
the design. The class value is only used to provide a specification
mask in fvtool for the analysis of the filter design.

• Impulse response — Impulse response type as one of IIR or FIR.
For A, C , C-message, and ITU-R 468–4 filter, IIR is the only option.
For a ITU-T 0.41 weighting filter, FIR is the only option.

• Frequency units — Choose Hz, kHz, MHz, or GHz. Normalized
frequency designs are not supported for audio weighting filters.

• Input Fs — The sampling frequency in Frequency units. For
example, if Frequency units is set to kHz, setting Input Fs to 40 is
equivalent to a 40 kHz sampling frequency.

Algorithm

• Design method — Valid design methods depend on the weighting
type. For type A and C weighting filters, the only valid design type
is ANSI S1.42. This is an IIR design method that follows ANSI
standard S1.42–2001. For a C message filter, the only valid design
method is Bell 41009, which is an IIR design method following the
Bell System Technical Reference PUB 41009. For a ITU-R 468–4
weighting filter, you can design an IIR or FIR filter. If you choose an
IIR design, the design method is IIR least p-norm. If you choose an
FIR design, the design method choices are: Equirriple or Frequency
Sampling. For an ITU-T 0.41 weighting filter, the available FIR
design methods are equirriple or Frequency Sampling
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• Scale SOS filter coefficients to reduce chance of overflow
— Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations in
the filter overflow and exceed the representable range of the filter.
Clearing this option removes the scaling. This parameter applies
only to IIR filters.

Filter implementation

• Structure — For the filter specifications and design method
you select, this parameter lists the filter structures available to
implement your filter. For audio weighting IIR filter designs, you
can choose direct form I or II biquad (SOS). You can also choose to
implement these structures in transposed form.

For FIR designs, you can choose direct form, direct-form transposed,
direct-form symmetric, direct-form asymmetric structures, or an
overlap and add structure.

• Use a System object to implement filter — Selecting this check
box gives you the choice of using a system object to implement the
filter. By default the check box is turned off. When the current
design method or structure is not supported by a system object filter,
then this check box is disabled.
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Bandpass Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down box.
Selecting Specify enables the Order option so you can enter the
filter order.

If you have the DSP System Toolbox software installed, you can
specify IIR filters with different numerator and denominator
orders. The default is equal orders. To specify a different
denominator order, check the Denominator order box.

Filter type — This dialog only applies if you have the DSP System
Toolbox software.

Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.
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Order
Enter the filter order. This option is enabled only if you select
Specify for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, regions between specification values such as Fstop1 and
Fpass1 represent transition regions where the filter response is not
explicitly defined.
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Frequency constraints
Select the filter features to use to define the frequency response
characteristics. This dialog applies only when Order mode is
Specify.

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

• Passband edges— Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges— Define the filter by specifying frequencies
for the edges of the stopbands.

• 3dB points — Define the filter response by specifying the
locations of the 3 dB points (IIR filters). The 3-dB point is the
frequency for the point 3 dB below the passband value.

• 3dB points and passband width — Define the filter by
specifying frequencies for the 3-dB points in the filter response
and the width of the passband. (IIR filters)

• 3dB points and stopband widths — Define the filter by
specifying frequencies for the 3-dB points in the filter response
and the width of the stopband. (IIR filters)

• 6dB points — Define the filter response by specifying the
locations of the 6-dB points. The 6-dB point is the frequency for
the point 6dB below the passband value. (FIR filters)

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in hertz, select one of the frequency
units from the drop-down list—Hz, kHz, MHz, or GHz. Selecting one
of the unit options enables the Input Fs parameter.
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Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Fstop1
Enter the frequency at the edge of the end of the first stopband.
Specify the value in either normalized frequency units or the
absolute units you select in Frequency units.

Fpass1
Enter the frequency at the edge of the start of the passband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Fpass2
Enter the frequency at the edge of the end of the passband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Fstop2
Enter the frequency at the edge of the start of the second
stopband. Specify the value in either normalized frequency units
or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude constraints
Specify as Unconstrained or Constrained bands. You must have
the DSP System Toolbox software to select Constrained bands.
Selecting Constrained bands enables dialogs for both stopbands
and the passband: Astop1, Astop2, and Apass. You cannot
specify constraints for all three bands simultaneously.
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Setting Magnitude constraints to Constrained bands enables
the Wstop and Wpass options under Design options.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB— Specify the magnitude in dB (decibels). This is the default
setting.

• Squared— Specify the magnitude in squared units.

Astop1
Enter the filter attenuation in the first stopband in the units you
choose for Magnitude units, either linear or decibels.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop2
Enter the filter attenuation in the second stopband in the units
you choose forMagnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.
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Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Phase constraint
Valid when the Design method is equiripple and you have the
DSP System Toolbox installed. Choose one of Linear, Minimum,
or Maximum.

Minimum order
This option only applies when you have the DSP System Toolbox
software and Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the
minimum-order design to be an even or odd order.
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Wstop1
Weight for the first stopband.

Wpass
Passband weight.

Wstop2
Weight for the second stopband.

Max pole radius
Valid only for IIR designs. Constrains the maximum pole radius.
The default is 1. Reducing the max pole radius can produce a
transfer function more resistant to quantization.

Init norm
Valid only for IIR designs. The initial norm used in the
optimization. The default initial norm is 2.

Init numerator
Specifies an initial estimate of the filter numerator coefficients.
This may be useful in difficult optimization problems.

Init denominator
Specifies an initial estimate of the filter denominator coefficients.
This may be useful in difficult optimization problems.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Bandstop Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option so you can enter the
filter order.

If you have the DSP System Toolbox software installed, you can
specify IIR filters with different numerator and denominator
orders. The default is equal orders. To specify a different
denominator order, check the Denominator order box.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.
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When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.
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Frequency constraints
Select the filter features to use to define the frequency response
characteristics. This dialog applies only when Order mode is
Specify.

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

• Passband edges— Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges— Define the filter by specifying frequencies
for the edges of the stopbands.

• 3dB points — Define the filter response by specifying the
locations of the 3 dB points (IIR filters). The 3 dB point is the
frequency for the point 3 dB point below the passband value.

• 3dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband (IIR filters).

• 3dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband (IIR filters).

• 6dB points — Define the filter response by specifying the
locations of the 6-dB points (FIR filters). The 6-dB point is the
frequency for the point 6 dB point below the passband value.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.
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Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Output Fs
When you design an interpolator, Fs represents the sampling
frequency at the filter output rather than the filter input. This
option is available only when you set Filter type is interpolator.

Fpass1
Enter the frequency at the edge of the end of the first passband.
Specify the value in either normalized frequency units or the
absolute units you select in Frequency units.

Fstop1
Enter the frequency at the edge of the start of the stopband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Fstop2
Enter the frequency at the edge of the end of the stopband. Specify
the value in either normalized frequency units or the absolute
units you select Frequency units.

Fpass2
Enter the frequency at the edge of the start of the second
passband. Specify the value in either normalized frequency units
or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.
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Magnitude constraints
Specify as Unconstrained or Constrained bands. You must have
the DSP System Toolbox software to select Constrained bands.
Selecting Constrained bands enables dialogs for both passbands
and the stopband: Apass1, Apass2, and Astop. You cannot
specify constraints for all three bands simultaneously.

Setting Magnitude constraints to Constrained bands enables
the Wstop and Wpass options under Design options.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared— Specify the magnitude in squared units.

Apass1
Enter the filter ripple allowed in the first passband in the units
you choose forMagnitude units, either linear or decibels.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels

Apass2
Enter the filter ripple allowed in the second passband in the units
you choose for Magnitude units, either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
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specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Phase constraint
Valid when the Design method is equiripple and you have the
DSP System Toolbox installed. Choose one of Linear, Minimum,
or Maximum.
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Minimum order
This option only applies when you have the DSP System Toolbox
software and Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the
minimum-order design to be an even or odd order.

Wpass1
Weight for the first passband.

Wstop
Stopband weight.

Wpass2
Weight for the second passband.

Match exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband
or stopband .

Max pole radius
Valid only for IIR designs. Constrains the maximum pole radius.
The default is 1. Reducing the max pole radius can produce a
transfer function more resistant to quantization.

Init norm
Valid only for IIR designs. The initial norm used in the
optimization. The default initial norm is 2.

Init numerator
Specifies an initial estimate of the filter numerator coefficients.
This may be useful in difficult optimization problems.

Init denominator
Specifies an initial estimate of the filter denominator coefficients.
This may be useful in difficult optimization problems.
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Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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CIC Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your CIC filter format,
such as the filter type and the differential delay.

Filter type
Select whether your filter will be a decimator or an interpolator.
Your choice determines the type of filter and the design methods
and structures that are available to implement your filter.
Selecting decimator or interpolator activates the Factor
option. When you design an interpolator, you enable the Output
Fs parameter.

When you design either a decimator or interpolator, the resulting
filter is a CIC filter that decimates or interpolates your input
signal.

Differential Delay
Specify the differential delay of your CIC filter as an integer value
greater than or equal to 1. The default value is 1. The differential
delay changes the shape, number, and location of nulls in the
filter response. Increasing the differential delay increases the
sharpness of the nulls and the response between the nulls. In
practice, differential delay values of 1 or 2 are the most common.

Factor
Specify the decimation or interpolation factor for your filter as an
integer value greater than or equal to 1. The default value is 2.

Frequency specifications

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.
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Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Output Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter output. When you
provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available only when you design interpolators.

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Magnitude specifications

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared— Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.
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Filter implementation

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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CIC Compensator Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the filter order mode and the filter type.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option (see the following
sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.
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Number of CIC sections
Specify the number of sections in the CIC filter for which you are
designing this compensator. Select the number of sections from
the drop-down list or enter the number.

Differential Delay
Specify the differential delay of your target CIC filter. The default
value is 1. Most CIC filters use 1 or 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve.

Frequency specifications

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Output Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter output. When you
provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available only when you design interpolators.
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Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared— Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
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default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing theMinimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.
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Note Generally, Minimum order designs are not available for
IIR filters.

Match exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
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filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Comb Filter Design Dialog Box—Main Pane
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Filter specifications

Parameters in this group enable you to specify the type of comb filter
and the number of peaks or notches.

Comb Type
Select Notch or Peak from the drop-down list. Notch creates
a comb filter that attenuates a set of harmonically related
frequencies. Peak creates a comb filter that amplifies a set of
harmonically related frequencies.

Order mode
Select Order or Number of Peaks/Notches from the drop-down
menu.

Select Order to enter the desired filter order in the

dialog box. The comb filter
has notches or peaks at increments of 2/Order in normalized
frequency units.

Select Number of Peaks or Number of Notches to specify the
number of peaks or notches and the Shelving filter order

.

1-420



filterbuilder

Shelving filter order
The Shelving filter order is a positive integer that determines
the sharpness of the peaks or notches. Larger values result in
sharper peaks or notches.

Frequency specifications

Parameters in this group enable you to specify the frequency constraints
and frequency units.

Frequency specifications
Select Quality factor or Bandwidth.

Quality factor is the ratio of the center frequency of the peak or
notch to the bandwidth calculated at the –3 dB point.

Bandwidth specifies the bandwidth of the peak or notch. By
default the bandwidth is measured at the –3 dB point. For
example, setting the bandwidth equal to 0.1 results in 3 dB
frequencies at normalized frequencies 0.05 above and below the
center frequency of the peak or notch.

Frequency Units
Specify the frequency units. The default is normalized frequency.
Choosing an option in Hz enables the Input Fs dialog box.

Magnitude specifications

Specify the units for the magnitude specification and the gain at which
the bandwidth is measured. This menu is disabled if you specify a filter
order. Select one of the following magnitude units from the drop down
list:

• dB — Specify the magnitude in decibels (default).

• Squared— Specify the magnitude in squared units.

Bandwidth gain — Specify the gain at which the bandwidth is
measured. The default is –3 dB.
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Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
The IIR Butterworth design is the only option for peaking or
notching comb filters.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off.
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Differentiator Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, regions between specification values such as Fpass (f1)
and Fstop (f3) represent transition regions where the filter response is
not explicitly defined.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option (see the following
sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.
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• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve.

Frequency constraints
This option is only available when you specify the order of the
filter design. Supported options are Unconstrained and Passband
edge and stopband edge.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
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frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude constraints
This option is only available when you specify the order of your
filter design. The options for Magnitude constraints depend
on the value of the Frequency constraints. If the value
of Frequency constraints is Unconstrained, Magnitude
constraints must be Unconstrained. If the value of Frequency
constraints is Passband edge and stopband edge,Magnitude
constraints can be Unconstrained, Passband ripple, or
Stopband attenuation.
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Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared— Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop2
Enter the filter attenuation in the second stopband in the units
you choose forMagnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options
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The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Wpass
Passband weight. This option is only available for a specified-order
design when Frequency constraints is equal to Passband edge
and stopband edge and the Design method is Equiripple.

Wstop
Stopband weight. This option is only available for a specified-order
design when Frequency constraints is equal to Passband edge
and stopband edge and the Design method is Equiripple.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
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off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.

Fractional Delay Filter Design Dialog Box — Main Pane

Frequency specifications

Parameters in this group enable you to specify your filter format, such
as the fractional delay and the filter order.
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Order
If you choose Specify for Order mode, enter your filter
order in this field, or select the order from the drop-down
list.filterbuilder designs a filter with the order you specify.

Fractional delay
Specify a value between 0 and 1 samples for the filter fractional
delay. The default value is 0.5 samples.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.
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Halfband Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter type and order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option (see the following
sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, or Interpolator. By default,
filterbuilder specifies single-rate filters.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that decimates or interpolates
your input by a factor of two.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications for a halfband lowpass filter
look similar to those shown in the following figure.
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In the figure, the transition region lies between the end of the passband
and the start of the stopband. The width is defined explicitly by the
value of Transition width.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

1-433



filterbuilder

Transition width
Specify the width of the transition between the end of the
passband and the edge of the stopband. Specify the value in
normalized frequency units or the absolute units you select in
Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. For FIR halfband filters,
the available design options are Equiripple and Kaiser
window. For IIR halfband filters, the available design options are
Butterworth, Elliptic, and IIR quasi-linear phase.

Design Options

The following design options are available for FIR halfband filters when
the user specifies an equiripple design:
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Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing theMinimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.
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Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Highpass Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option so you can enter the
filter order.

If your Impulse response is IIR, you can specify an equal order
for the numerator and denominator, or different numerator and
denominator orders. The default is equal orders. To specify a
different denominator order, check the Denominator order box.

Filter type
This option is only available if you have the DSP System Toolbox
software. Select Single-rate, Decimator, Interpolator, or
Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are
available to implement your filter. By default, filterbuilder
specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.
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When you design either a decimator or an interpolator, the
resulting filter is a highpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, the region between specification values Fstop and Fpass
represents the transition region where the filter response is not
explicitly defined.
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Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

• Stopband edge and passband edge — Define the filter by
specifying the frequencies for the edges for the stopband and
passband.

• Passband edge— Define the filter by specifying the frequency
for the edge of the passband.

• Stopband edge— Define the filter by specifying the frequency
for the edges of the stopband.

• Stopband edge and 3dB point — Define the filter by
specifying the stopband edge frequency and the 3-dB down
point (IIR designs).

• 3dB point and passband edge — Define the filter by
specifying the 3-dB down point and passband edge frequency
(IIR designs).

• 3dB point— Define the filter by specifying the frequency for
the 3-dB point (IIR designs or maxflat FIR).

• 6dB point— Define the filter by specifying the frequency for
the 6-dB point in the filter response (FIR designs).

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
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specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Fpass
Enter the frequency at the of the passband. Specify the value in
either normalized frequency units or the absolute units you select
Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared— Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.
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Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
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reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Phase constraint
This option only applies when you have the DSP System Toolbox
software and when the Design method is equiripple. Select
one of Linear, Minimum, or Maximum.

Minimum order — This option only applies when you have the DSP
System Toolbox software and the Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the
minimum-order design to be an even or odd order.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband when you select Passband or Stopband.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.
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• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Wpass
Passband weight. This option only applies when Impulse
response is FIR and Order mode is Specify.

Wstop
Stopband weight. This option only applies when Impulse
response is FIR and Order mode is Specify.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Hilbert Filter Design Dialog Box — Main Pane
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Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
This option is only available if you have the DSP System Toolbox
software. Select either Minimum (the default) or Specify from the
drop-down list. Selecting Specify enables the Order option (see
the following sections) so you can enter the filter order.

Filter type
This option is only available if you have the DSP System Toolbox
software. Select Single-rate, Decimator, Interpolator, or
Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are
available to implement your filter. By default, filterbuilder
specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.
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Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, the regions between 0 and f1 and between f2 and 1
represent the transition regions where the filter response is explicitly
defined by the transition width.
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Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Transition width
Specify the width of the transitions at the ends of the passband.
Specify the value in normalized frequency units or the absolute
units you select in Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared— Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.
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Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
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reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

FIR Type
This option is only available in a minimum-order design. Specify
whether to design a type 3 or a type 4 FIR filter. The filter type is
defined as follows:

• Type 3 — FIR filter with even order antisymmetric coefficients

• Type 4 — FIR filter with odd order antisymmetric coefficients
Select 3 or 4 from the drop-down list.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Inverse Sinc Filter Design Dialog Box — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.
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Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option (see the following
sections) so you can enter the filter order.

Response type
Select Lowpass or Highpass to design an inverse sinc lowpass
or highpass filter.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.
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Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

Regions between specification values such as Fpass and Fstop represent
transition regions where the filter response is not explicitly defined.

Frequency constraints
This option is only available when you specify the filter order. The
following options are available:

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

• Passband edge — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edge — Define the filter by specifying frequencies
for the edges of the stopbands.
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• 6dB point — The 6-dB point is the frequency for the point 6
dB point below the passband value.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.
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• dB — Specify the magnitude in decibels (default)

• Squared— Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).
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Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Phase constraint
Available options are Linear, Minimum, and Maximum.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options;

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

1-456



filterbuilder

Sinc frequency factor
A frequency dilation factor. The sinc frequency factor, C ,
parameterizes the passband magnitude response for a lowpass
design through H(ω) = sinc(Cω)^(-P) and for a highpass design
through H(ω) = sinc(C(1-ω))^(-P).

Sinc power
Negative power of passband magnitude response. The sinc power,
P, parameterizes the passband magnitude response for a lowpass
design through H(ω) = sinc(Cω)^(-P) and for a highpass design
through H(ω) = sinc(C(1-ω))^(-P).

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Lowpass Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option (see the following
sections) so you can enter the filter order.

If your Impulse response is IIR, you can specify an equal order
for the numerator and denominator, or different numerator and
denominator orders. The default is equal orders. To specify a
different denominator order, check the Denominator order box.

Filter type
This option is only available if you have the DSP System Toolbox.
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.
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When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to the one
shown in the following figure.

In the figure, regions between specification values such as Fpass and Fstop
represent transition regions where the filter response is not explicitly
defined.
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Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

• Passband and stopband edge—Define the filter by specifying
the frequencies for the edge of the stopband and passband.

• Passband edge— Define the filter by specifying the frequency
for the edge of the passband.

• Stopband edge— Define the filter by specifying the frequency
for the edges of the stopband.

• Passband edge and 3dB point — Define the filter by
specifying the passband edge frequency and the 3-dB down
point (IIR designs).

• 3dB point and stopband edge — Define the filter by
specifying the 3-dB down point and stopband edge frequency
(IIR designs).

• 3dB point— Define the filter by specifying the frequency for
the 3-dB point (IIR designs or maxflat FIR).

• 6dB point— Define the filter by specifying the frequency for
the 6-dB point in the filter response (FIR designs).

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
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available when you select one of the frequency options from the
Frequency units list.

Fpass
Enter the frequency at the of the passband. Specify the value in
either normalized frequency units or the absolute units you select
Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared— Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.
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Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.
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Phase constraint
This option only applies when you have the DSP System Toolbox
software and when the Design method is equiripple. Select
one of Linear, Minimum, or Maximum.

Minimum order — This option only applies when you have the DSP
System Toolbox software and the Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the
minimum-order design to be an even or odd order.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband when you select Passband or Stopband.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.
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• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Wpass
Passband weight. This option only applies when Impulse
response is FIR and Order mode is Specify.

Wstop
Stopband weight. This option only applies when Impulse
response is FIR and Order mode is Specify.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.

Notch

See “Peak/Notch Filter Design Dialog Box — Main Pane” on page 1-483.

1-465



filterbuilder

Nyquist Filter Design Dialog Box — Main Pane
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Filter specifications

Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Band
Specifies the location of the center of the transition region between
the passband and the stopband. The center of the transition
region, bw, is calculated using the value for Band:

bw = Fs/(2*Band).

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default
impulse response. When you choose an impulse response, the
design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list.
Selecting Specify enables the Order option (see the following
sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.
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When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.
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In the figure, BW is the width of the transition region and Band
determines the location of the center of the region.

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stopbands and
passbands.

• Passband edges— Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges— Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.
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Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Transition width
Specify the width of the transition between the end of the
passband and the edge of the stopband. Specify the value in
normalized frequency units or the absolute units you select in
Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear— Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared— Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.
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Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

1-471



filterbuilder

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing theMinimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and designs the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.
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Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Octave Filter Design Dialog Box — Main Pane
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Filter specifications

Order
Specify filter order. Possible values are: 4, 6, 8, 10.

Bands per octave
Specify the number of bands per octave. Possible values are: 1,
3, 6, 12, 24.

Frequency units
Specify frequency units as Hz or kHz.

Input Fs
Specify the input sampling frequency in the frequency units
specified previously.

Center Frequency
Select from the drop-down list of available center frequency
values.

Algorithm

Design Method
Butterworth is the design method used for this type of filter.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter implementation

Structure
Specify filter structure. Choose from:

• Direct-form I SOS

• Direct-form II SOS

• Direct-form I transposed SOS

• Direct-form II transposed SOS
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Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default, the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Parametric Equalizer Filter Design Dialog Box — Main Pane
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Filter specifications

Order mode
Select Minimum to design a minimum order filter that meets the
design specifications, or Specify to enter a specific filter order.
The order mode also affects the possible frequency constraints,
which in turn limit the gain specifications. For example, if you
specify a Minimum order filter, the available frequency constraints
are:

• Center frequency, bandwidth, passband width

• Center frequency, bandwidth, stopband width

If you select Specify, the available frequency constraints are:

• Center frequency, bandwidth

• Center frequency, quality factor

• Shelf type, cutoff frequency, quality factor

• Shelf type, cutoff frequency, shelf slope parameter

• Low frequency, high frequency

Order
This parameter is enabled only if the Order mode is set to
Specify. Enter the filter order in this text box.

Frequency specifications

Depending on the filter order, the possible frequency constraints
change. Once you choose the frequency constraints, the input boxes in
this area change to reflect the selection.

Frequency constraints
Select the specification to represent the frequency constraints.
The following options are available:

• Center frequency, bandwidth, passband width (available
for minimum order only)
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• Center frequency, bandwidth, stopband width (available
for minimum order only)

• Center frequency, bandwidth (available for a specified order
only)

• Center frequency, quality factor (available for a specified
order only)

• Shelf type, cutoff frequency, quality factor (available
for a specified order only)

• Shelf type, cutoff frequency, shelf slope parameter
(available for a specified order only)

• Low frequency, high frequency (available for a specified
order only)

Frequency units
Select the frequency units from the available drop down list
(Normalized, Hz, kHz, MHz, GHz). If Normalized is selected,
then the Input Fs box is disabled for input.

Input Fs
Enter the input sampling frequency. This input box is disabled
for input if Normalized is selected in the Frequency units input
box.

Center frequency
Enter the center frequency in the units specified by the value in
Frequency units.

Bandwidth
The bandwidth determines the frequency points at which the
filter magnitude is attenuated by the value specified as the
Bandwidth gain in theGain specifications section. By default,
the Bandwidth gain defaults to db(sqrt(.5)), or –3 dB relative
to the center frequency. The Bandwidth property only applies
when the Frequency constraints are: Center frequency,
bandwidth, passband width, Center frequency, bandwidth,
stopband width, or Center frequency, bandwidth.
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Passband width
The passband width determines the frequency points at which
the filter magnitude is attenuated by the value specified as the
Passband gain in the Gain specifications section. This option
is enabled only if the filter is of minimum order, and the frequency
constraint selected is Center frequency, bandwidth, passband
width.

Stopband width
The stopband width determines the frequency points at which
the filter magnitude is attenuated by the value specified as the
Stopband gain in the Gain specifications section. This option
is enabled only if the filter is of minimum order, and the frequency
constraint selected is Center frequency, bandwidth, stopband
width.

Low frequency
Enter the low frequency cutoff. This option is enabled only if the
filter order is user specified and the frequency constraint selected
is Low frequency, high frequency. The filter magnitude is
attenuated by the amount specified in Bandwidth gain.

High frequency
Enter the high frequency cutoff. This option is enabled only if the
filter order is user specified and the frequency constraint selected
is Low frequency, high frequency. The filter magnitude is
attenuated by the amount specified in Bandwidth gain.

Gain specifications

Depending on the filter order and frequency constraints, the possible
gain constraints change. Also, once you choose the gain constraints the
input boxes in this area change to reflect the selection.

Gain constraints
Select the specification array to represent gain constraints,
and remember that not all of these options are available for all
configurations. The following is a list of all available options:
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• Reference, center frequency, bandwidth, passband

• Reference, center frequency, bandwidth, stopband

• Reference, center frequency, bandwidth,passband,
stopband

• Reference, center frequency, bandwidth

Gain units
Specify the gain units either dB or squared. These units are used
for all gain specifications in the dialog box.

Reference gain
The reference gain determines the level to which the filter
magnitude attenuates in Gain units. The reference gain is a floor
gain for the filter magnitude response. For example, you may use
the reference gain together with the Center frequency gain to
leave certain frequencies unattenuated (reference gain of 0 dB)
while boosting other frequencies.

Bandwidth gain
Specifies the gain in Gain units at which the bandwidth is
defined. This property applies only when the Frequency
constraints specification contains a bandwidth parameter, or is
Low frequency, high frequency.

Center frequency gain
Specify the center frequency in Gain units

Passband gain
The passband gain determines the level in Gain units at which
the passband is defined. The passband is determined either by
the Passband width value, or the Low frequency and High
frequency values in the Frequency specifications section.

Stopband gain
The stopband gain is the level in Gain units at which the
stopband is defined. This property applies only when the Order
mode is minimum and the Frequency constaints are Center
frequency, bandwidth, stopband width.
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Boost/cut gain
The boost/cut gain applies only when the designing a shelving
filter. Shelving filters include the Shelf type parameter in the
Frequency constraints specification. The gain in the passband
of the shelving filter is increased by Boost/cut gain dB from a
floor gain of 0 dB.

Algorithm

Design method
Select the design method from the drop-down list. Different IIR
design methods are available depending on the filter constraints
you specify.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter implementation

Structure
Select filter structure. The possible choices are:

• Direct-form I SOS

• Direct-form II SOS

• Direct-form I transposed SOS

• Direct-form II transposed SOS

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Peak/Notch Filter Design Dialog Box — Main Pane
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Filter specifications

In this area you can specify whether you want to design a peaking filter
or a notching filter, as well as the order of the filter.

Response
Select Peak or Notch from the drop-down box.

Order
Enter the filter order. The order must be even.

Frequency specifications

This group of parameters allows you to specify frequency constraints
and units.

Frequency Constraints
Select the frequency constraints for filter specification. There are
two choices as follows:

• Center frequency and quality factor

• Center frequency and bandwidth

Frequency units
The frequency units are normalized by default. If you specify
units other than normalized, filterbuilder assumes that you
wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to
1), Hz, kHz, MHz, GHz.

Input Fs
This input box is enabled if Frequency units other than
Normalized (0 to 1) are specified. Enter the input sampling
frequency.

Center frequency
Enter the center frequency in the units you specified in
Frequency units.
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Quality Factor
This input box is enabled only when Center frequency and
quality factor is chosen for the Frequency Constraints.
Enter the quality factor.

Bandwidth
This input box is enabled only when Center frequency and
bandwidth is chosen for the Frequency Constraints. Enter
the bandwidth.

Magnitude specifications

This group of parameters allows you to specify the magnitude
constraints, as well as their values and units.

Magnitude Constraints
Depending on the choice of constraints, the other input boxes
are enabled or disabled. Select from four magnitude constraints
available:

• Unconstrained

• Passband ripple

• Stopband attenuation

• Passband ripple and stopband attenuation

Magnitude units
Select the magnitude units: either dB or squared.

Apass
This input box is enabled if the magnitude constraints selected
are Passband ripple or Passband ripple and stopband
attenuation. Enter the passband ripple.

Astop
This input box is enabled if the magnitude constraints selected
are Stopband attenuation or Passband ripple and stopband
attenuation. Enter the stopband attenuation.
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Algorithm

The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists all design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter the methods available to design filters
changes as well.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Filter implementation

Structure
Lists all available filter structures for the filter specifications and
design method you select. The typical options are:

• Direct-form I SOS

• Direct-form II SOS

• Direct-form I transposed SOS

• Direct-form II transposed SOS

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Pulse-shaping Filter Design Dialog Box—Main Pane
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Filter specifications

Parameters in this group enable you to specify the shape and length
of the filter.

Pulse shape
Select the shape of the impulse response from the following
options:

• Raised Cosine

• Square Root Raised Cosine

• Gaussian

Order mode
This specification is only available for raised cosine and square
root raised cosine filters. For these filters, select one of the
following options:

• Minimum— This option will result in the minimum-length filter
satisfying the user-specified Frequency specifications.

• Specify order—This option allows the user to construct a
raised cosine or square root cosine filter of a specified order by
entering an even number in the Order input box. The length
of the impulse response will be Order+1 .

• Specify symbols—This option enables the user to specify the
length of the impulse response in an alternative manner. If
Specify symbols is chosen, the Order input box changes to
the Number of symbols input box.

Samples per symbol
Specify the oversampling factor. Increasing the oversampling
factor guards against aliasing and improves the FIR filter
approximation to the ideal frequency response. If Order is
specified in Number of symbols, the filter length will be
Number of symbols*Samples per symbol+1. The product
Number of symbols*Samples per symbol must be an even
number.
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If a Gaussian filter is specified, the filter length must be specified
in Number of symbols and Samples per symbol. The product
Number of symbols*Samples per symbol must be an even
number. The filter length will be Number of symbols*Samples
per symbol+1.

Filter Type
This option is only available if you have the DSP System Toolbox
software. Choose Single rate, Decimator, Interpolator,
or Sample-rate converter. If you select Decimator or
Interpolator, the decimation and interpolation factors default to
the value of the Samples per symbol. If you select Sample-rate
converter, the interpolation factor defaults to Samples per
symbol and the decimation factor defaults to 3.

Frequency specifications

Parameters in this group enable you to specify the frequency response
of the filter. For raised cosine and square root raised cosine filters, the
frequency specifications include:

Rolloff factor
The rolloff factor takes values in the range [0,1]. The smaller the
rolloff factor, the steeper the transition in the stopband.

Frequency units
The frequency units are normalized by default. If you specify
units other than normalized, filterbuilder assumes that you
wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to
1), Hz, kHz, MHz, GHz

For a Gaussian pulse shape, the available frequency specifications are:

Bandwidth-time product
This option allows the user to specify the width of the Gaussian
filter. Note that this is independent of the length of the filter. The
bandwidth-time product (BT) must be a positive real number.
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Smaller values of the bandwidth-time product result in larger
pulse widths in time and steeper stopband transitions in the
frequency response.

Frequency units
The frequency units are normalized by default. If you specify
units other than normalized, filterbuilder assumes that you
wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to
1), Hz, kHz, MHz, GHz

Magnitude specifications

If the Order mode is specified as Minimum, theMagnitude units may
be selected from:

• dB—Specify the magnitude in decibels (default).

• Linear—Specify the magnitude in linear units.

Algorithm

The only Design method available for FIR pulse-shaping filters is
the Window method.

Filter implementation

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure.

Use a System object to implement filter
Selecting this check box gives you the choice of using a system
object to implement the filter. By default the check box is turned
off. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.
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Purpose 2-norm or infinity-norm of digital filter

Syntax filternorm(b,a)
filternorm(b,a,pnorm)
filternorm(b,a,2,tol)

Description A typical use for filter norms is in digital filter scaling to reduce
quantization effects. Scaling often improves the signal-to-noise ratio
of the filter without resulting in data overflow. You, also, can use the
2-norm to compute the energy of the impulse response of a filter.

filternorm(b,a) computes the 2-norm of the digital filter defined by
the numerator coefficients in b and denominator coefficients in a.

filternorm(b,a,pnorm) computes the 2- or infinity-norm (inf-norm) of
the digital filter, where pnorm is either 2 or inf.

filternorm(b,a,2,tol) computes the 2-norm of an IIR filter with the
specified tolerance, tol. The tolerance can be specified only for IIR
2-norm computations. pnorm in this case must be 2. If tol is not
specified, it defaults to 1e-8.

Examples Compute the 2-norm with a tolerance of 1e-10 of an IIR filter:

[b,a]=butter(5,.5);
L2=filternorm(b,a,2,1e-10)

L2 =

0.7071

Compute the inf-norm of an FIR filter:

b=firpm(30,[.1 .9],[1 1],'Hilbert');
Linf=filternorm(b,1,inf)

Linf =
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1.0028

Algorithms Given a filter with frequency reponse H(ejω), the Lp-norm for 1≤p<∞
is given by

|| ( )|| ( | ( | ) /H e H e dj
p

j p p


 


=
−∫

1
2

1

For the case p=∞, the L∞ norm is

|| ( )|| | ( )|H e H ej j
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For the case p=2, Parseval’s theorem states that
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where h(n) is the impulse response of the filter. The energy of the
impulse response is the squared L2 norm.

References [1] Jackson, L.B., Digital Filters and Signal Processing, Third Edition,
Kluwer Academic Publishers, 1996, Chapter 11.

See Also zp2sos | norm

1-492



filtfilt

Purpose Zero-phase digital filtering

Syntax y = filtfilt(b,a,x)
y = filtfilt(SOS,G,x)

Description y = filtfilt(b,a,x) performs zero-phase digital filtering by
processing the input data, x, in both the forward and reverse directions
[1]. filtfilt operates along the first nonsingleton dimension of x.
The vector b provides the numerator coefficients of the filter and the
vector a provides the denominator coefficients. If you use an all-pole
filter, enter 1 for b. If you use an all-zero filter (FIR), enter 1 for a.
After filtering the data in the forward direction, filtfilt reverses the
filtered sequence and runs it back through the filter. The result has the
following characteristics:

• Zero-phase distortion

• A filter transfer function, which equals the squared magnitude of the
original filter transfer function

• A filter order that is double the order of the filter specified by b and a
filtfilt minimizes start-up and ending transients by matching initial
conditions, and you can use it for both real and complex inputs. Do not
use filtfilt with differentiator and Hilbert FIR filters, because the
operation of these filters depends heavily on their phase response.

Note The length of the input x must be more than three times the
filter order defined as max(length(b)-1,length(a)-1).

y = filtfilt(SOS,G,x) zero-phase filters the data x using the
second-order section (biquad) filter represented by the matrix SOS and
scale values G. The matrix SOS is an L-by-6 matrix containing the L
second-order sections. The matrix SOS must be of the form:
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b b b a a a
b b b a a a

b b b a a aL L L L L

01 11 21 01 11 21

02 12 22 02 12 22

0 1 2 0 1

… … … … … …

22L

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

where each row are the coefficients of a biquad filter. The vector of filter
scale values, G, must have a length between 1 and L+1.

Note When implementing zero-phase filtering using a second-order
section filter, the length of the input x must be more than 6 samples.

Examples Zero-phase filtering helps preserve features in the filtered time
waveform exactly where those features occur in the unfiltered
waveform. To illustrate the use of filtfilt for zero-phase filtering,
consider an electrocardiogram waveform as an example.

plot(ecg(500)); %plot ECG signal
axis([0 500 -1.25 1.25]);

The QRS complex is an important feature in the ECG waveform
beginning around time point 160 in this example.
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The following example corrupts the ECG waveform with additive
noise, constructs a lowpass FIR equiripple filter, and filters the noisy
waveform using both zero-phase and conventional filtering. Because
the filter is an all-zero (FIR) filter, the denominator equals 1. Seed the
random number generator for reproducible results.

rng default;
x=ecg(500)'+0.25*randn(500,1); %noisy waveform
h=fdesign.lowpass('Fp,Fst,Ap,Ast',0.15,0.2,1,60);
d=design(h,'equiripple'); %Lowpass FIR filter
y=filtfilt(d.Numerator,1,x); %zero-phase filtering
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y1=filter(d.Numerator,1,x); %conventional filtering
subplot(211);
plot([y y1]);
title('Filtered Waveforms');
legend('Zero-phase Filtering','Conventional Filtering');
subplot(212);
plot(ecg(500));
title('Original Waveform');
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Zero-phase filtering reduces noise in the signal and preserves the QRS
complex at the same time it occurs in the original signal. Conventional
filtering reduces noise in the signal, but delays the QRS complex.

Repeat the above using a Butterworth second-order section filter:

h=fdesign.lowpass('N,F3dB',12,0.15);
d1 = design(h,'butter');
y = filtfilt(d1.sosMatrix,d1.ScaleValues,x);
plot(x,'b-.'); hold on;
plot(y,'r','linewidth',3);
legend('Noisy ECG','Zero-phase Filtering','location','NorthEast');
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 284–285.

[2] Mitra, S.K., Digital Signal Processing, 2nd ed., McGraw-Hill, 2001,
Sections 4.4.2 and 8.2.5.

[3] Gustafsson, F., Determining the initial states in forward-backward
filtering, IEEE Transactions on Signal Processing, April 1996, Volume
44, Issue 4, pp. 988–992.
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See Also fftfilt | filter | filter2
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Purpose Initial conditions for transposed direct-form II filter implementation

Syntax z = filtic(b,a,y,x)
z = filtic(b,a,y)

Description z = filtic(b,a,y,x) finds the initial conditions, z, for the delays in
the transposed direct-form II filter implementation given past outputs
y and inputs x. The vectors b and a represent the numerator and
denominator coefficients, respectively, of the filter’s transfer function.

The vectors x and y contain the most recent input or output first, and
oldest input or output last.

x x x x x n
y y y y y m
= − − − … −
= − − − … −

[ ( ), ( ), ( ), , ( )]
[ ( ), ( ), ( ), , ( )]

1 2 3
1 2 3

where n is length(b)-1 (the numerator order) and m is length(a)-1
(the denominator order). If length(x) is less than n, filtic pads
it with zeros to length n; if length(y) is less than m, filtic pads it
with zeros to length m. Elements of x beyond x(n-1) and elements of y
beyond y(m-1) are unnecessary so filtic ignores them.

Output z is a column vector of length equal to the larger of n and m.
z describes the state of the delays given past inputs x and past outputs y.

z = filtic(b,a,y) assumes that the input x is 0 in the past.

The transposed direct-form II structure is shown in the following
illustration.

n-1 is the filter order.
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filtic works for both real and complex inputs.

Algorithms filtic performs a reverse difference equation to obtain the delay states
z.

Diagnostics If any of the input arguments y, x, b, or a is not a vector (that is, if any
argument is a scalar or array), filtic gives the following error message:

Requires vector inputs.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 296, 301-302.

See Also filter | filtfilt
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Purpose Filter order

Syntax n = filtord(b,a)
n = filtord(sos)

Description n = filtord(b,a) returns the filter order, n, for the causal rational
system function specified by the numerator coefficients, b, and
denominator coefficients, a.

n = filtord(sos) returns the filter order for the filter specified by the
second order sections matrix, sos. sos is a K-by-6 matrix. The number
of sections, K, must be greater than or equal to 2. Each row of sos
corresponds to the coefficients of a second order filter. The i-th row of
the second order section matrix corresponds to [bi(1) bi(2) bi(3)
ai(1) ai(2) ai(3)].

Input
Arguments

b - Numerator coefficients
vector | scalar

Numerator coefficients, specified as a scalar, or a vector. If the filter is
an allpole filter, b is a scalar. Otherwise, b is a row or column vector.

Example: b = fir1(20,0.25)

Data Types
single | double
Complex Number Support: Yes

a - Denominator coefficients
vector | scalar

Denominator coefficients, specified as a scalar, or a vector. If the filter
is an FIR filter, a is a scalar. Otherwise, a is a row or column vector.

Example: [b,a] = butter(20,0.25)

Data Types
single | double
Complex Number Support: Yes
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sos - Matrix of second order sections
matrix

Matrix of second order sections, specified as a K-by-6 matrix. The
system function of the K-th biquad filter has the rational z-transform

H z
B B z B z

A A z A zk
k k k

k k k

( )
( ) ( ) ( )

( ) ( ) ( )


 
 

 

 

1 2 3

1 2 3

1 2

1 2

The coefficients in the K-th row of the matrix, sos, are ordered as
follows

[ ( ) ( ) ( ) ( ) ( ) ( )]B B B A A Ak k k k k k1 2 3 1 2 3

The frequency response of the filter is system function evaluated on
the unit circle with

z ei f 2

Data Types
single | double
Complex Number Support: Yes

Output
Arguments

n - Filter order
integer

Filter order, specifed as an integer.

Examples Verify Order of FIR Filter

Design an order-20 FIR filter with a cutoff frequency of 0.5π
radians/sample using the window method. Verify the filter order.

b = fir1(20,0.5);
n = filtord(b,1)
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Determine Order Difference Between FIR and IIR Designs

Design FIR equiripple and IIR Butterworth filters from the same set
of specifications. Determine the difference in filter order between the
two designs.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',100,120,0.5,60,1000);
Hd_FIR = design(d,'equiripple');
Hd_IIR = design(d,'butter');
filtord(Hd_FIR.Numerator,1)-filtord(Hd_IIR.sosMatrix)

See Also isallpass | isminphase | ismaxphase | isstable
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Purpose Filter states

Syntax Hs = filtstates.structure(input1,...)

Description Hs = filtstates.structure(input1,...) returns a filter states
object Hs, which contains the filter states.

You can extract a filtstates object from the states property of an
object with

Hd = dfilt.df1
Hs = Hd.states

or, for an mfilt object in the DSP System Toolbox product, with

Hm = mfilt.cicdecim
Hs = Hm.states

Structures

Structures for filtstates specify the type of filter structure. Available
types of structures for filtstates are shown below.

filtstates.structure Description

filtstates.dfiir filtstates for IIR direct-form I filters
(dfilt.df1, dfilt.df1t, dfilt.df1sos,
and dfilt.df1tsos)

filtstates.cic filtstates for cascaded integrator comb
filters. (Available only with DSP System
Toolbox and Fixed-Point Designer
products.)

Refer to the particular filtstates.structure reference page or use
the syntax help filtstates.structure at the MATLAB prompt for
more information.
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See Also filtstates.dfiir | dfilt | dfilt.df1 | dfilt.df1t | dfilt.df1sos
| dfilt.df1tsos

1-506



filtstates.dfiir

Purpose IIR direct-form filter states

Syntax Hs = filtstates.dfiir(numstates,denstates)

Description Hs = filtstates.dfiir(numstates,denstates) returns an IIR
direct-form filter states object Hs with two properties — Numerator and
Denominator, which contain the filter states. These two properties are
column vectors with each column representing a separate channel of
filter states. The number of states is always one less than the number
of filter numerator or denominator coefficients.

You can extract a filtstates object from the states property of an IIR
direct-form I object with

Hd = dfilt.df1
Hs = Hd.states

Methods

You can use the following methods on a filtstates.dfiir object.

Method Description

double Converts a filtstates object to a double-precision
vector containing the values of the numerator
and denominator states. The numerator states
are listed first in this vector, followed by the
denominator states.

single Converts a filtstates object to a single-precision
vector containing the values of the numerator and
denominator states. (This method is used with the
DSP System Toolbox product.)

Examples This example demonstrates the interaction of filtstates with a
dfilt.df1 object.

[b,a] = butter(4,0.5); % Design butterworth filter
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Hd = dfilt.df1(b,a); % Create dfilt object
Hs = Hd.states % Extract filter states object

% from dfilt states property
Hs.Numerator = [1,1,1,1] % Modify numerator states
Hd.states = Hs % Set modified states back to

% original object

Dbl = double(Hs) % Create double vector from
% states

See Also filtstates | dfilt | dfilt.df1 | dfilt.df1t | dfilt.df1sos |
dfilt.df1tsos
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Purpose Generate Simulink filter block

Syntax filt2block(b)
filt2block(b,'subsystem')
filt2block( ___ ,'FilterStructure',structure)

filt2block(b,a)
filt2block(b,a'subsystem')
filt2block( ___ ,'FilterStructure',structure)

filt2block(sos)
filt2block(sos,'subsystem')
filt2block( ___ ,'FilterStructure',structure)

filt2block( ___ ,Name,Value)

Description filt2block(b) generates a Discrete FIR Filter block with filter
coefficients, b.

filt2block(b,'subsystem') generates a Simulink subsystem block
that implements an FIR filter using sum, gain, and delay blocks.

filt2block( ___ ,'FilterStructure',structure) specify the filter
structure for the FIR filter.

filt2block(b,a) generates a Discrete Filter block with numerator
coefficients, b, and denominator coefficients, a.

filt2block(b,a'subsystem') generates a Simulink subsystem block
that implements an IIR filter using sum, gain, and delay blocks.

filt2block( ___ ,'FilterStructure',structure) specify the filter
structure for the IIR filter.
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filt2block(sos) generates a Biquad Filter block with second order
sections matrix, sos. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. You must have the DSP
System Toolbox software installed to use this syntax.

filt2block(sos,'subsystem') generates a Simulink subsystem block
that implements a biquad filter using sum, gain, and delay blocks.

filt2block( ___ ,'FilterStructure',structure) specify the
filterstructure for the biquad filter.

filt2block( ___ ,Name,Value)) uses additional options specified by
one or more Name,Value pair arguments.

Input
Arguments

b - Numerator filter coefficients
row or column vector

Numerator filter coefficients, specified as a row or column vector. The
filter coefficients are ordered in descending powers of z-1 with the first
element corresponding to the coefficient for z0.

Example: B = fir1(30,0.25);

Data Types
single | double
Complex Number Support: Yes

structure - Filter structure
string

Filter structure, specified as a string. Valid options for structure
depend on the input arguments. The following table lists the valid filter
structures by input.
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Input Filter Structures

b 'directForm' (default),
'directFormTransposed',
'directFormSymmetric',
'directFormAntiSymmetric',
'overlapAdd'. The
'overlapAdd' structure is
only available when you omit
'subsystem'

a 'directForm2'
(default),'directForm1',
'directForm1Transposed',
'directForm2',
'directForm2Transposed'

sos 'directForm2Transposed'
(default), 'directForm1',
'directForm1Transposed',
'directForm2'

a - Denominator filter coefficients
row or column vector

Denominator filter coefficients, specified as a row or column vector. The
filter coefficients are ordered in descending powers of z-1 with the first
element corresponding to the coefficient for z0. The first filter coefficient
must be 1.

Data Types
single | double
Complex Number Support: Yes

sos - Second order section matrix
K-by-2 matrix

Second order section matrix, specified as a K-by-2 matrix. Each row of
the matrix contains the coefficients for a biquadratic rational function
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in z(-1). The z-transform of the K-th rational biquadratic system impulse
response is

H z
B B z B z

A A z A zk
k k k

k k k

( )
( ) ( ) ( )

( ) ( ) ( )


 
 

 

 

1 2 3

1 2 3

1 2

1 2

The coefficients in the K-th row of the matrix, sos, are ordered as
follows

[ ( ) ( ) ( ) ( ) ( ) ( )]B B B A A Ak k k k k k1 2 3 1 2 3

The frequency response of the filter is system function evaluated on
the unit circle with

z ei f 2

Data Types
single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Destination’ - Destination for Simulink filter block
'current' (default) | 'new' | user-defined string

Destination for the Simulink filter block, specified as a string. You
can add the filter block to your current model with 'current', add
the filter block to a new model with 'new', or specify the name of a
a target subsystem.

Example: filt2block(b,'subsystem','MyFilterBlock')

Data Types
char
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’BlockName’ - Block name
string

Block name, specified as a string.

’OverwriteBlock’ - Overwrite block
false (default) | true

Overwrite block, specified as a logical false or true. If you use a value
for 'BlockName' that is the same as an existing block, the value of
'OverwriteBlock' determines whether the block is overwritten. The
default value is false.

Data Types
logical

’MapCoefficientsToPorts’ - Map coefficients to ports
false (default) | true

Map coefficients to ports, specified as a logical false or true.

Data Types
logical

’CoefficientNames’ - Coefficient variable names
cell array of strings

Coefficient variable names, specified as a cell array. This name-value
pair is only applicable when 'MapCoefficientsToPorts' is true. The
default values are {'Num'}, {'Num','Den'}, and {'Num','Den','g'}
for FIR, IIR, and biquad filters.

Data Types
cell

’FrameBasedProcessing’ - Frame-based or sample-based
processing
true (default) | false

Frame-based or sample-based processing, specified as a logical true or
false. The default is true and frame-based processing is used.

1-513



filt2block

Data Types
logical

’OptimizeZeros’ - Remove zero-gain blocks
true (default) | false

Remove zero-gain blocks, specified as a logical true or false. By
default zero-gain blocks are removed.

Data Types
logical

’OptimizeOnes’ - Replace unity-gain blocks with direct
connection
true (default) | false

Replace unity-gain blocks with direct connection, specified as a logical
true or false. The default is true.

Data Types
logical

’OptimizeNegativeOnes’ - Replace negative unity-gain blocks
with sign change
true (default) | false

Replace negative unity-gain blocks with a sign change at the nearest
block, specified as a logical true or false. The default is true.

Data Types
logical

’OptimizeDelayChains’ - Replace cascaded delays with a single
delay
true (default) | false

Replace cascaded delays with a single delay, specified as a logical true
or false. The default is true.

Data Types
logical
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Examples Generate Block from FIR Filter

Design an order 30 FIR filter using the window method. Specify the
cutoff frequency of π/4 radians/sample. Create a Simulink block.

b = fir1(30,0.25);
filt2block(b)

Generate Block from IIR Filter

Design an order 30 IIR Butterworth filter. Specify the cutoff frequency
of π/4 radians/sample. Create a Simulink block.

[b,a] = butter(30,0.25);
filt2block(b,a)

Generate FIR Filter with Direct Form I Transposed Structure

Design an order 30 FIR filter using the window method. Specify the
cutoff frequency of π/4 radians/sample. Create a Simulink block with a
direct form I transposed structure

b = fir1(30,0.25);
filt2block(b,'FilterStructure','directFormTransposed')

Generate IIR Filter with Direct Form I Structure

Design an order 30 IIR Butterworth filter. Specify the cutoff frequency
of π/4 radians/sample. Create a Simulink block with a direct form
I structure.

[b,a] = butter(30,0.25);
filt2block(b,a,'FilterStructure','directForm1')

Generate Simulink Subsytem Block from Second Order
Section Matrix

Design a 5-th order Butterworth filter with a cutoff frequency of 0.2π
radians/sample. Obtain the filter in biquad form and generate a
Simulink subsystem block from the second order sections.
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[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k);
filt2block(sos,'subsystem')

Lowpass FIR Filter Block with Sample-Based Processing

Generate a Simulink subsystem block that implements an FIR lowpass
filter using sum, gain, and delay blocks. Specify the input processing
to be elements as channels by specifying 'FrameBasedProcessing' as
false.

B = fir1(30,.25);
filt2block(B,'subsystem','BlockName','Lowpass FIR',...

'FrameBasedProcessing',false)

See Also realizemdl
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Purpose Find local maxima

Syntax pks = findpeaks(data)
[pks,locs] = findpeaks(data)
[...] = findpeaks(data,'Name',value)

Description pks = findpeaks(data) returns local maxima or peaks, pks, in the
input data. data requires a row or column vector with real-valued
elements with a minimum length of three. findpeaks compares each
element of data to its neighboring values. If an element of data is
larger than both of its neighbors or equals Inf, the element is a local
peak. If there are no local maxima, pks is an empty vector.

[pks,locs] = findpeaks(data) returns the indices of the local peaks.

[...] = findpeaks(data,'Name',value) accepts one or more
comma-separated name/value pairs. Specify 'Name' inside single
quotes. 'Name' is not case sensitive.

Input
Arguments

Name-Value Pair Arguments

’MINPEAKHEIGHT’

Minimum peak height

Specify the minimum peak height as a real-valued scalar. findpeaks
only returns peaks that exceed the MINPEAKHEIGHT. Sometimes,
specifying a minimum peak height reduces processing time.

Default: -Inf

’MINPEAKDISTANCE’

Minimum peak separation

Specify the minimum peak distance, or minimum separation between
peaks as a positive integer. You can use the 'MINPEAKDISTANCE'
option to specify that the algorithm ignore small peaks that occur
in the neighborhood of a larger peak. When you specify a value for
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'MINPEAKDISTANCE, the algorithm initially identifies all the peaks in
the input data and sorts those peaks in descending order. Beginning
with the largest peak, the algorithm ignores all identified peaks not
separated by more than the value of 'MINPEAKDISTANCE'.

Default: 1

’THRESHOLD’

Minimum height difference

Specify the threshold height difference between a peak and its
neighboring values as a positive real number. findpeaks only returns
peaks that exceed their neighbors by at least the value of 'THRESHOLD'.

Default: 0

’NPEAKS’

Number of peaks

Specify the maximum number of peaks to return as a positive integer.
findpeaks operates from the first element of the input data and
terminates when the number of peaks reaches the value of 'NPEAKS'.

Default: Returns all peaks that meet the specified criteria

’SORTSTR’

Peak sorting

Specify whether to return the peaks in order. Possible values for
'SORTSTR' are 'ascend', 'descend', and 'none'. 'ascend' returns
peaks in ascending, or increasing order from the smallest to largest
value. The option 'descend' specifies peaks in descending order, from
the largest to smallest value. Using 'none' returns peaks in the order
they occur in the input data. Specify the value string in lowercase only.

Default: 'none'
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Examples Find peaks in a vector:

data = [2 12 4 6 9 4 3 1 19 7];
pks=findpeaks(data);
% returns the 1x3 vector [12 9 19];

Find peaks separated by more than three elements and return their
locations:

data = [2 12 4 6 9 4 3 1 19 7];
[pks,locs]=findpeaks(data,'minpeakdistance',3);
% returns pks=[12 19]
% locs=[2 9]

Create a signal with 11 peaks. Find each peak and mark the peaks
in a plot:

x = linspace(0,1,1024);
Pos = [0.1 0.13 0.15 0.23 0.25 0.40 ...
0.44 0.65 0.76 0.78 0.81];

Hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2];
Wdt = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005];
PeakSig = zeros(size(x));

for n =1:length(Pos)
PeakSig = ...

PeakSig + Hgt(n)./( 1 + abs((x - Pos(n))./Wdt(n))).^4;
end

% find peaks with defaults
[pks,locs] = findpeaks(PeakSig);
plot(x,PeakSig); hold on;
% offset values of peak heights for plotting
plot(x(locs),pks+0.05,'k^','markerfacecolor',[1 0 0]);
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Purpose Window-based finite impulse response filter design

Syntax b = fir1(n,Wn)
b = fir1(n,Wn,'ftype')
b = fir1(n,Wn,window)
b = fir1(n,Wn,'ftype',window)
b = fir1(...,'normalization')

Description fir1 implements the classical method of windowed linear-phase
FIR digital filter design [1]. It designs filters in standard lowpass,
highpass, bandpass, and bandstop configurations. By default the filter
is normalized so that the magnitude response of the filter at the center
frequency of the passband is 0 dB.

Note Use fir2 for windowed filters with arbitrary frequency response.

b = fir1(n,Wn) returns row vector b containing the n+1 coefficients
of an order n lowpass FIR filter. This is a Hamming-window based,
linear-phase filter with normalized cutoff frequency Wn. The output
filter coefficients, b, are ordered in descending powers of z.

B z b b z b n z N( ) ( ) ( ) ( )= + +…+ +− −1 2 11

Wn is a number between 0 and 1, where 1 corresponds to the Nyquist
frequency.

If Wn is a two-element vector, Wn = [w1 w2], fir1 returns a bandpass
filter with passband w1 < ω< w2.

If Wn is a multi-element vector, Wn = [w1 w2 w3 w4 w5 ... wn], fir1
returns an order n multiband filter with bands 0 < ω< w1, w1 < ω< w2,
..., wn < ω< 1.

By default, the filter is scaled so that the center of the first passband
has a magnitude of exactly 1 after windowing.
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b = fir1(n,Wn,'ftype') specifies a filter type, where 'ftype' is:

• 'high' for a highpass filter with cutoff frequency Wn.

• 'stop' for a bandstop filter, if Wn = [w1 w2]. The stopband frequency
range is specified by this interval.

• 'DC-1' to make the first band of a multiband filter a passband.

• 'DC-0' to make the first band of a multiband filter a stopband.

fir1 always uses an even filter order for the highpass and bandstop
configurations. This is because for odd orders, the frequency response
at the Nyquist frequency is 0, which is inappropriate for highpass and
bandstop filters. If you specify an odd-valued n, fir1 increments it by 1.

b = fir1(n,Wn,window) uses the window specified in column vector
window for the design. The vector window must be n+1 elements long. If
no window is specified, fir1 uses a Hamming window (see hamming) of
length n+1.

b = fir1(n,Wn,'ftype',window) accepts both 'ftype' and window
parameters.

b = fir1(...,'normalization') specifies whether or not the filter
magnitude is normalized. The string 'normalization' can be the
following:

• 'scale' (default): Normalize the filter so that the magnitude
response of the filter at the center frequency of the passband is 0 dB.

• 'noscale': Do not normalize the filter.

The group delay of the FIR filter designed by fir1 is n/2.

Algorithms fir1 uses the window method of FIR filter design [1]. If w(n) denotes a
window, where 1 ≤ n ≤ N, and the impulse response of the ideal filter is
h(n), then the windowed digital filter coefficients are given by

b n w n h n n N( ) ( ) ( )= ≤ ≤1
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Examples Example 1

Design a 48th-order FIR bandpass filter with passband 0.35 ≤ ω ≤ 0.65:

b = fir1(48,[0.35 0.65]);
freqz(b,1,512)

Example 2

The chirp.mat file contains a signal, y, that has most of its power above
fs/4, or half the Nyquist frequency. Design a 34th-order FIR highpass
filter to attenuate the components of the signal below fs/4. Use a cutoff
frequency of 0.48 and a Chebyshev window with 30 dB of ripple:

load chirp % Load y and fs.
b = fir1(34,0.48,'high',chebwin(35,30));
freqz(b,1,512)
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References [1] Programs for Digital Signal Processing, IEEE Press, New York,
1979. Algorithm 5.2.

See Also cfirpm | filter | fir2 | fircls | fircls1 | firls | freqz |
kaiserord | firpm | window
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Purpose Frequency sampling-based finite impulse response filter design

Syntax b = fir2(n,f,m)
b = fir2(n,f,m,window)
b = fir2(n,f,m,npt)
b = fir2(n,f,m,npt,window)
b = fir2(n,f,m,npt,lap)
b = fir2(n,f,m,npt,lap,window)

Description fir2 designs frequency sampling-based digital FIR filters with
arbitrarily shaped frequency response.

Note Use fir1 for windows-based standard lowpass, bandpass,
highpass, and bandstop configurations.

b = fir2(n,f,m) returns row vector b containing the n+1 coefficients of
an order n FIR filter. The frequency-magnitude characteristics of this
filter match those given by vectors f and m:

• f is a vector of frequency points in the range from 0 to 1, where 1
corresponds to the Nyquist frequency. The first point of f must be 0
and the last point 1. The frequency points must be in increasing
order.

• m is a vector containing the desired magnitude response at the points
specified in f.

• f and m must be the same length.

• Duplicate frequency points are allowed, corresponding to steps in
the frequency response.

Use plot(f,m) to view the filter shape.

The output filter coefficients, b, are ordered in descending powers of z.

B z b b z b n z n( ) ( ) ( ) ( )= + + + +− −1 2 11 
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fir2 always uses an even filter order for configurations with a passband
at the Nyquist frequency. This is because for odd orders, the frequency
response at the Nyquist frequency is necessarily 0. If you specify an
odd-valued n, fir2 increments it by 1.

b = fir2(n,f,m,window) uses the window specified in the column
vector window. The vector window must be n+1 elements long. If no
window is specified, fir2 uses a Hamming window (see hamming) of
length n+1.

b = fir2(n,f,m,npt) or

b = fir2(n,f,m,npt,window) specifies the number of points, npt, for
the grid onto which fir2 linearly interpolates the frequency response
with or without the window specification. npt must be greater than
1/2 the filter order (npt>n/2). If desired, you can interpolate f and m
before passing them to fir2.

b = fir2(n,f,m,npt,lap) and

b = fir2(n,f,m,npt,lap,window) specify the size of the region, lap,
that fir2 inserts around duplicate frequency points, with or without a
window specification.

See “Algorithms” on page 1-527 for more on npt and lap.

Examples Design a 30th-order lowpass filter and overplot the desired frequency
response with the actual frequency response:

f = [0 0.6 0.6 1]; m = [1 1 0 0];
b = fir2(30,f,m);
[h,w] = freqz(b,1,128);
plot(f,m,w/pi,abs(h))
legend('Ideal','fir2 Designed')
title('Comparison of Frequency Response Magnitudes')
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Algorithms The desired frequency response is linearly interpolated onto a dense,
evenly spaced grid of length npt. npt is 512 by default. If two successive
values of f are the same, a region of lap points is set up around this
frequency to provide a smooth but steep transition in the requested
frequency response. By default, lap is 25. The filter coefficients are
obtained by applying an inverse fast Fourier transform to the grid and
multiplying by a window; by default, this is a Hamming window.

References [1] Mitra, S.K., Digital Signal Processing A Computer Based Approach,
First Edition, McGraw-Hill, New York, 1998, pp. 462-468.

[2] Jackson, L.B., Digital Filters and Signal Processing, Third Edition,
Kluwer Academic Publishers, Boston, 1996, pp. 301-307.

See Also butter | cheby1 | cheby2 | ellip | fir1 | maxflat | firpm |
yulewalk
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Purpose Constrained least square, FIR multiband filter design

Syntax b = fircls(n,f,amp,up,lo)
fircls(n,f,amp,up,lo,'design_flag')

Description b = fircls(n,f,amp,up,lo) generates a length n+1 linear phase FIR
filter b. The frequency-magnitude characteristics of this filter match
those given by vectors f and amp:

• f is a vector of transition frequencies in the range from 0 to 1, where
1 corresponds to the Nyquist frequency. The first point of f must be 0
and the last point 1. The frequency points must be in increasing
order.

• amp is a vector describing the piecewise constant desired amplitude of
the frequency response. The length of amp is equal to the number of
bands in the response and should be equal to length(f)-1.

• up and lo are vectors with the same length as amp. They define the
upper and lower bounds for the frequency response in each band.

fircls always uses an even filter order for configurations with a
passband at the Nyquist frequency (that is, highpass and bandstop
filters). This is because for odd orders, the frequency response at the
Nyquist frequency is necessarily 0. If you specify an odd-valued n,
fircls increments it by 1.

fircls(n,f,amp,up,lo,'design_flag') enables you to monitor the
filter design, where 'design_flag' can be

• 'trace', for a textual display of the design error at each iteration
step.

• 'plots', for a collection of plots showing the filter’s full-band
magnitude response and a zoomed view of the magnitude response
in each sub-band. All plots are updated at each iteration step. The
O’s on the plot are the estimated extremals of the new iteration and
the X’s are the estimated extremals of the previous iteration, where
the extremals are the peaks (maximum and minimum) of the filter
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ripples. Only ripples that have a corresponding O and X are made
equal.

• 'both', for both the textual display and plots.

Examples Design an order 150 lowpass filter:

n=150;
f=[0 0.4 1];
a=[1 0];
up=[1.02 0.01];
lo =[0.98 -0.01];
b = fircls(n,f,a,up,lo,'both'); % Display plots of bands
% The Bound Violations indicate iterations as
% the design converges.
fvtool(b) % Display magnitude plot
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Note Normally, the lower value in the stopband will be specified as
negative. By setting lo equal to 0 in the stopbands, a nonnegative
frequency response amplitude can be obtained. Such filters can be
spectrally factored to obtain minimum phase filters.

Algorithms fircls uses an iterative least-squares algorithm to obtain an equiripple
response. The algorithm is a multiple exchange algorithm that uses
Lagrange multipliers and Kuhn-Tucker conditions on each iteration.

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained
Least Square Design of FIR Filters without Specified Transition
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Bands,” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal
Processing, Vol. 2 (May 1995), pp. 1260-1263.

[2] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least
Square Design of FIR Filters without Specified Transition Bands.”
IEEE Transactions on Signal Processing, Vol. 44, No. 8 (August 1996).

See Also fircls1 | firls | firpm
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Purpose Constrained least square, lowpass and highpass, linear phase, FIR
filter design

Syntax b = fircls1(n,wo,dp,ds)
b = fircls1(n,wo,dp,ds,'high')
b = fircls1(n,wo,dp,ds,wt)
b = fircls1(n,wo,dp,ds,wt,'high')
b = fircls1(n,wo,dp,ds,wp,ws,k)
b = fircls1(n,wo,dp,ds,wp,ws,k,'high')
b = fircls1(n,wo,dp,ds,...,'design_flag')

Description b = fircls1(n,wo,dp,ds) generates a lowpass FIR filter b, where n+1
is the filter length, wo is the normalized cutoff frequency in the range
between 0 and 1 (where 1 corresponds to the Nyquist frequency), dp is
the maximum passband deviation from 1 (passband ripple), and ds is
the maximum stopband deviation from 0 (stopband ripple).

b = fircls1(n,wo,dp,ds,'high') generates a highpass FIR filter b.
fircls1 always uses an even filter order for the highpass configuration.
This is because for odd orders, the frequency response at the Nyquist
frequency is necessarily 0. If you specify an odd-valued n, fircls1
increments it by 1.

b = fircls1(n,wo,dp,ds,wt) and

b = fircls1(n,wo,dp,ds,wt,'high') specifies a frequency wt above
which (for wt > wo) or below which (for wt < wo) the filter is guaranteed
to meet the given band criterion. This will help you design a filter that
meets a passband or stopband edge requirement. There are four cases:

• Lowpass:

- 0 < wt < wo < 1: the amplitude of the filter is within dp of 1 over
the frequency range 0 < ω < wt.

- 0 < wo < wt < 1: the amplitude of the filter is within ds of 0 over
the frequency range wt < ω < 1.

• Highpass:
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- 0 < wt < wo < 1: the amplitude of the filter is within ds of 0 over
the frequency range 0 < ω < wt.

- 0 < wo < wt < 1: the amplitude of the filter is within dp of 1 over
the frequency range wt < ω < 1.

b = fircls1(n,wo,dp,ds,wp,ws,k) generates a lowpass FIR filter
b with a weighted function, where n+1 is the filter length, wo is the
normalized cutoff frequency, dp is the maximum passband deviation
from 1 (passband ripple), and ds is the maximum stopband deviation
from 0 (stopband ripple). wp is the passband edge of the L2 weight
function and ws is the stopband edge of the L2 weight function, where
wp < wo < ws. k is the ratio (passband L2 error)/(stopband L2 error)

k
A D d

A D d
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w
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z

=
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−
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∫
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b = fircls1(n,wo,dp,ds,wp,ws,k,'high') generates a highpass FIR
filter b with a weighted function, where ws < wo < wp.

b = fircls1(n,wo,dp,ds,...,'design_flag') enables you to
monitor the filter design, where 'design_flag' can be

• 'trace', for a textual display of the design table used in the design

• 'plots', for plots of the filter’s magnitude, group delay, and zeros
and poles. All plots are updated at each iteration step. The O’s on
the plot are the estimated extremals of the new iteration and the
X’s are the estimated extremals of the previous iteration, where
the extremals are the peaks (maximum and minimum) of the filter
ripples. Only ripples that have a corresponding O and X are made
equal.

• 'both', for both the textual display and plots
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Note In the design of very narrow band filters with small dp and
ds, there may not exist a filter of the given length that meets the
specifications.

Examples Design an order 55 lowpass filter with a cutoff frequency at 0.3:

n = 55; wo = 0.3;
dp = 0.02; ds = 0.008;
b = fircls1(n,wo,dp,ds,'both'); % Display plots of bands

Bound Violation = 0.0870385343920
Bound Violation = 0.0149343456540
Bound Violation = 0.0056513587932
Bound Violation = 0.0001056264205
Bound Violation = 0.0000967624352
Bound Violation = 0.0000000226538
Bound Violation = 0.0000000000038

% The above Bound Violations indicate iterations as
% the design converges.
fvtool(b) % Display magnitude plot
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Algorithms fircls1 uses an iterative least-squares algorithm to obtain an
equiripple response. The algorithm is a multiple exchange algorithm
that uses Lagrange multipliers and Kuhn-Tucker conditions on each
iteration.

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained
Least Square Design of FIR Filters without Specified Transition
Bands,” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal
Processing, Vol. 2 (May 1995), pp.1260-1263.

[2] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least
Square Design of FIR Filters without Specified Transition Bands,”
IEEE Transactions on Signal Processing, Vol. 44, No. 8 (August 1996).

See Also fircls | firls | firpm
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Purpose Least square linear-phase FIR filter design

Syntax b = firls(n,f,a)
b = firls(n,f,a,w)
b = firls(n,f,a,'ftype')
b = firls(n,f,a,w,'ftype')

Description firls designs a linear-phase FIR filter that minimizes the weighted,
integrated squared error between an ideal piecewise linear function and
the magnitude response of the filter over a set of desired frequency
bands.

b = firls(n,f,a) returns row vector b containing the n+1 coefficients
of the order n FIR filter whose frequency-amplitude characteristics
approximately match those given by vectors f and a. The output filter
coefficients, or “taps,” in b obey the symmetry relation.

b k b n k k n( ) ( ), ,...,= + − = +2 1 1     

These are type I (n odd) and type II (n even) linear-phase filters. Vectors
f and a specify the frequency-amplitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range
between 0 and 1, where 1 corresponds to the Nyquist frequency.
The frequencies must be in increasing order. Duplicate frequency
points are allowed and, in fact, can be used to design a filter exactly
the same as those returned by the fir1 and fir2 functions with a
rectangular (rectwin) window.

• a is a vector containing the desired amplitude at the points specified
in f.

The desired amplitude function at frequencies between pairs of
points (f(k), f(k+1)) for k odd is the line segment connecting the points
(f(k), a(k)) and (f(k+1), a(k+1)).

The desired amplitude function at frequencies between pairs of
points (f(k), f(k+1)) for k even is unspecified. These are transition or
“don’t care” regions.
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• f and a are the same length. This length must be an even number.

firls always uses an even filter order for configurations with a
passband at the Nyquist frequency. This is because for odd orders, the
frequency response at the Nyquist frequency is necessarily 0. If you
specify an odd-valued n, firls increments it by 1.

The figure below illustrates the relationship between the f and a
vectors in defining a desired amplitude response.

b = firls(n,f,a,w) uses the weights in vector w to weight the fit in
each frequency band. The length of w is half the length of f and a, so
there is exactly one weight per band.

b = firls(n,f,a,'ftype') and

b = firls(n,f,a,w,'ftype') specify a filter type, where 'ftype' is:

• 'hilbert' for linear-phase filters with odd symmetry (type III and
type IV). The output coefficients in b obey the relation

b(k) = –b(n + 2 – k), k = 1, ... , n + 1.

This class of filters includes the Hilbert transformer, which has a
desired amplitude of 1 across the entire band.
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• 'differentiator' for type III and type IV filters, using a special
weighting technique. For nonzero amplitude bands, the integrated
squared error has a weight of (1/f)2 so that the error at low frequencies
is much smaller than at high frequencies. For FIR differentiators,
which have an amplitude characteristic proportional to frequency, the
filters minimize the relative integrated squared error (the integral of
the square of the ratio of the error to the desired amplitude).

Examples Example 1

Design an order 255 lowpass filter with transition band:

b = firls(255,[0 0.25 0.3 1],[1 1 0 0]);

Example 2

Design a 31 coefficient differentiator:

b = firls(30,[0 0.9],[0 0.9*pi],'differentiator');

An ideal differentiator has the response

D(w) = jw

The amplitudes include a pi multiplier because the frequencies are
normalized by pi.

Example 3

Design a 24th-order anti-symmetric filter with piecewise linear
passbands and plot the desired and actual frequency response:

F = [0 0.3 0.4 0.6 0.7 0.9];
A = [0 1 0 0 0.5 0.5];
b = firls(24,F,A,'hilbert');
for i=1:2:6,

plot([F(i) F(i+1)],[A(i) A(i+1)],'--'), hold on
end
[H,f] = freqz(b,1,512,2);
plot(f,abs(H)), grid on, hold off
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legend('Ideal','firls Design')

Algorithms Reference [1] describes the theoretical approach behind firls. The
function solves a system of linear equations involving an inner product
matrix of size roughly n/2 using the MATLAB \ operator.

This function designs type I, II, III, and IV linear-phase filters. Type
I and II are the defaults for n even and odd respectively, while the
'hilbert' and 'differentiator' flags produce type III (n even) and
IV (n odd) filters. The various filter types have different symmetries
and constraints on their frequency responses (see [2] for details).

Linear
Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response
H(f), f = 0

Response
H(f), f = 1
(Nyquist)

Type I Even
b k b n k k n( ) ( ), ,...,= + − = +2 1 1

No
restriction

No
restriction

Type II Even
b k b n k k n( ) ( ), ,...,= + − = +2 1 1

No
restriction

H(1) = 0
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Linear
Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response
H(f), f = 0

Response
H(f), f = 1
(Nyquist)

Type III Odd
b k b n k k n( ) ( ), ,...,= − + − = +2 1 1

H(0) = 0 H(1) = 0

Type IV Odd
b k b n k k n( ) ( ), ,...,= − + − = +2 1 1

H(0) = 0 No
restriction

Diagnostics One of the following diagnostic messages is displayed when an incorrect
argument is used:

F must be even length.
F and A must be equal lengths.
Requires symmetry to be 'hilbert' or 'differentiator'.
Requires one weight per band.
Frequencies in F must be nondecreasing.
Frequencies in F must be in range [0,1].

A more serious warning message is

Warning: Matrix is close to singular or badly scaled.

This tends to happen when the product of the filter length and
transition width grows large. In this case, the filter coefficients b might
not represent the desired filter. You can check the filter by looking
at its frequency response.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley
& Sons, 1987, pp. 54-83.

[2] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 256-266.

See Also fir1 | fir2 | firrcos | firpm
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Purpose Parks-McClellan optimal FIR filter design

Syntax b = firpm(n,f,a)
b = firpm(n,f,a,w)
b = firpm(n,f,a, 'ftype')
b = firpm(n,f,a,w, 'ftype')
b = firpm(...,{lgrid})
[b,err] = firpm(...)
[b,err,res] = firpm(...)
b = firpm(n,f,@fresp,w)
b = firpm(n,f,@fresp,w,'ftype')

Description firpm designs a linear-phase FIR filter using the Parks-McClellan
algorithm [1]. The Parks-McClellan algorithm uses the Remez exchange
algorithm and Chebyshev approximation theory to design filters with
an optimal fit between the desired and actual frequency responses.
The filters are optimal in the sense that the maximum error between
the desired frequency response and the actual frequency response is
minimized. Filters designed this way exhibit an equiripple behavior
in their frequency responses and are sometimes called equiripple
filters. firpm exhibits discontinuities at the head and tail of its impulse
response due to this equiripple nature.

b = firpm(n,f,a) returns row vector b containing the n+1 coefficients
of the order n FIR filter whose frequency-amplitude characteristics
match those given by vectors f and a.

The output filter coefficients (taps) in b obey the symmetry relation:

b k b n k k n( ) ( ), ,...,= + − = +2 1 1    

Vectors f and a specify the frequency-magnitude characteristics of the
filter:

• f is a vector of pairs of normalized frequency points, specified in
the range between 0 and 1, where 1 corresponds to the Nyquist
frequency. The frequencies must be in increasing order.
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• a is a vector containing the desired amplitudes at the points specified
in f.

The desired amplitude at frequencies between pairs of points (f(k),
f(k+1)) for k odd is the line segment connecting the points (f(k), a(k))
and (f(k+1), a(k+1)).

The desired amplitude at frequencies between pairs of points (f(k),
f(k+1)) for k even is unspecified. The areas between such points are
transition or “don’t care” regions.

• f and a must be the same length. The length must be an even
number.

The relationship between the f and a vectors in defining a desired
frequency response is shown in the illustration below.

firpm always uses an even filter order for configurations with even
symmetry and a nonzero passband at the Nyquist frequency. This
is because for impulse responses exhibiting even symmetry and odd
orders, the frequency response at the Nyquist frequency is necessarily
0. If you specify an odd-valued n, firpm increments it by 1.
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b = firpm(n,f,a,w) uses the weights in vector w to weight the fit in
each frequency band. The length of w is half the length of f and a, so
there is exactly one weight per band.

Note b = firpm(n,f,a,w) is a synonym for b =
firpm(n,f,{@firpmfrf,a},w), where, @firpmfrf is the
predefined frequency response function handle for firpm. If desired,
you can write your own response function. Use help private/firpmfrf
for information.

b = firpm(n,f,a, 'ftype') and

b = firpm(n,f,a,w, 'ftype') specify a filter type, where 'ftype' is

• 'hilbert', for linear-phase filters with odd symmetry (type III and
type IV)

The output coefficients in b obey the relation b(k) = –b(n+2 –k), k= 1,
...,n+1. This class of filters includes the Hilbert transformer, which
has a desired amplitude of 1 across the entire band.

For example,

h = firpm(30,[0.1 0.9],[1 1],'hilbert');

designs an approximate FIR Hilbert transformer of length 31.

• 'differentiator', for type III and type IV filters, using a special
weighting technique

For nonzero amplitude bands, it weights the error by a factor of
1/f so that the error at low frequencies is much smaller than at
high frequencies. For FIR differentiators, which have an amplitude
characteristic proportional to frequency, these filters minimize the
maximum relative error (the maximum of the ratio of the error to the
desired amplitude).

b = firpm(...,{lgrid}) uses the integer lgrid to control the density
of the frequency grid, which has roughly (lgrid*n)/(2*bw) frequency
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points, where bw is the fraction of the total frequency band interval [0,1]
covered by f. Increasing lgrid often results in filters that more exactly
match an equiripple filter, but that take longer to compute. The default
value of 16 is the minimum value that should be specified for lgrid.
Note that the {lgrid} argument must be a 1-by-1 cell array.

[b,err] = firpm(...) returns the maximum ripple height in err.

[b,err,res] = firpm(...) returns a structure res with the following
fields.

res.fgrid Frequency grid vector used for the filter design
optimization

res.des Desired frequency response for each point in
res.fgrid

res.wt Weighting for each point in opt.fgrid

res.H Actual frequency response for each point in
res.fgrid

res.error Error at each point in res.fgrid (res.des-res.H)

res.iextr Vector of indices into res.fgrid for extremal
frequencies

res.fextr Vector of extremal frequencies

You can also use firpm to write a function that defines the desired
frequency response. The predefined frequency response function handle
for firpm is @firpmfrf, which designs a linear-phase FIR filter.

b = firpm(n,f,@fresp,w) returns row vector b containing the n+1
coefficients of the order n FIR filter whose frequency-amplitude
characteristics best approximate the response returned by function
handle @fresp. The function is called from within firpm with the
following syntax.

[dh,dw] = fresp(n,f,gf,w)

The arguments are similar to those for firpm:
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• n is the filter order.

• f is the vector of normalized frequency band edges that appear
monotonically between 0 and 1, where 1 is the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated
over each specified frequency band by firpm. gf determines the
frequency grid at which the response function must be evaluated,
and contains the same data returned by cfirpm in the fgrid field of
the opt structure.

• w is a vector of real, positive weights, one per band, used during
optimization. w is optional in the call to firpm; if not specified, it is
set to unity weighting before being passed to fresp.

• dh and dw are the desired complex frequency response and band
weight vectors, respectively, evaluated at each frequency in grid gf.

b = firpm(n,f,@fresp,w,'ftype') designs antisymmetric (odd)
filters, where 'ftype' is either 'd' for a differentiator or 'h' for a
Hilbert transformer. If you do not specify an ftype, a call is made to
fresp to determine the default symmetry property sym. This call is
made using the syntax.

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments n, f, w, etc., may be used as necessary in determining
an appropriate value for sym, which firpm expects to be either 'even'
or 'odd'. If fresp does not support this calling syntax, firpm defaults
to even symmetry.

Examples Graph the desired and actual frequency responses of a 17th-order
Parks-McClellan bandpass filter:

f = [0 0.3 0.4 0.6 0.7 1]; a = [0 0 1 1 0 0];
b = firpm(17,f,a);
[h,w] = freqz(b,1,512);
plot(f,a,w/pi,abs(h))
legend('Ideal','firpm Design')
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Algorithms firpm is a MEX-file version of the original Fortran code from [1], altered
to design arbitrarily long filters with arbitrarily many linear bands.

firpm designs type I, II, III, and IV linear-phase filters. Type I and
type II are the defaults for n even and n odd, respectively, while type
III (n even) and type IV (n odd) are obtained with the 'hilbert' and
'differentiator' flags. The different types of filters have different
symmetries and certain constraints on their frequency responses (see
[5] for more details).

Linear
Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response
H(f),
f = 0

Response
H(f), f = 1
(Nyquist)

Type I Even even:

b k b n k k n( ) ( ), ,...,= + − = +2 1 1

No
restriction

No
restriction

Type II Odd even:

b k b n k k n( ) ( ), ,...,= + − = +2 1 1

No
restriction

H(1)=0firpm
increments
the filter
order by 1 if
you attempt
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Linear
Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response
H(f),
f = 0

Response
H(f), f = 1
(Nyquist)

to construct
a type II
filter with
a nonzero
passband at
the Nyquist
frequency.

Type III Even odd:

b k b n k k n( ) ( ), ,...,= − + − = +2 1 1

H(0) = 0 H(1) = 0

Type IV Odd odd:

b k b n k k n( ) ( ), ,...,= − + − = +2 1 1

H(0) = 0 No
restriction

Diagnostics If you get the following warning message,

-- Failure to Converge --
Probable cause is machine rounding error.

it is possible that the filter design may still be correct. Verify the design
by checking its frequency response.

References [1] Programs for Digital Signal Processing, IEEE Press, New York,
1979, Algorithm 5.1.

[2] Selected Papers in Digital Signal Processing, II, IEEE Press, New
York, 1979.

[3] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley
& Sons, New York:, 1987, p. 83.
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[4] Rabiner, L.R., J.H. McClellan, and T.W. Parks, “FIR Digital Filter
Design Techniques Using Weighted Chebyshev Approximations,” Proc.
IEEE 63 (1975).

[5] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 256-266.

See Also butter | cheby1 | cheby2 | cfirpm | ellip | fir1 | fir2 | fircls |
fircls1 | firls | firrcos | firpmord | function_handle | yulewalk
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Purpose Parks-McClellan optimal FIR filter order estimation

Syntax [n,fo,ao,w] = firpmord(f,a,dev)
[n,fo,ao,w] = firpmord(f,a,dev,fs)
c = firpmord(f,a,dev,fs,'cell')

Description [n,fo,ao,w] = firpmord(f,a,dev) finds the approximate order,
normalized frequency band edges, frequency band amplitudes, and
weights that meet input specifications f, a, and dev.

• f is a vector of frequency band edges (between 0 and Fs/2, where Fs
is the sampling frequency), and a is a vector specifying the desired
amplitude on the bands defined by f. The length of f is two less than
twice the length of a. The desired function is piecewise constant.

• dev is a vector the same size as a that specifies the maximum
allowable deviation or ripples between the frequency response and
the desired amplitude of the output filter for each band.

Use firpm with the resulting order n, frequency vector fo, amplitude
response vector ao, and weights w to design the filter b which
approximately meets the specifications given by firpmord input
parameters f, a, and dev.

b = firpm(n,fo,ao,w)

[n,fo,ao,w] = firpmord(f,a,dev,fs) specifies a sampling frequency
fs. fs defaults to 2 Hz, implying a Nyquist frequency of 1 Hz. You
can therefore specify band edges scaled to a particular application’s
sampling frequency.

In some cases firpmord underestimates the order n. If the filter does
not meet the specifications, try a higher order such as n+1 or n+2.

c = firpmord(f,a,dev,fs,'cell') generates a cell-array whose
elements are the parameters to firpm.
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Examples Example 1

Design a minimum-order lowpass filter with a 500 Hz passband cutoff
frequency and 600 Hz stopband cutoff frequency, with a sampling
frequency of 2000 Hz, at least 40 dB attenuation in the stopband, and
less than 3 dB of ripple in the passband:

rp = 3; % Passband ripple
rs = 40; % Stopband ripple
fs = 2000; % Sampling frequency
f = [500 600]; % Cutoff frequencies
a = [1 0]; % Desired amplitudes
% Compute deviations
dev = [(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)];
[n,fo,ao,w] = firpmord(f,a,dev,fs);
b = firpm(n,fo,ao,w);
freqz(b,1,1024,fs);
title('Lowpass Filter Designed to Specifications');
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Note that the filter falls slightly short of meeting the stopband
attenuation and passband ripple specifications. Using n+1 in the call to
firpm instead of n achieves the desired amplitude characteristics.

Example 2

Design a lowpass filter with a 1500 Hz passband cutoff frequency
and 2000 Hz stopband cutoff frequency, with a sampling frequency
of 8000 Hz, a maximum stopband amplitude of 0.1, and a maximum
passband error (ripple) of 0.01:

[n,fo,ao,w] = firpmord([1500 2000],[1 0],[0.01 0.1],8000 );
b = firpm(n,fo,ao,w);

This is equivalent to

c = firpmord( [1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = firpm(c{:});

Note In some cases, firpmord underestimates or overestimates the
order n. If the filter does not meet the specifications, try a higher order
such as n+1 or n+2.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist
frequency.

Algorithms firpmord uses the algorithm suggested in [1]. This method is inaccurate
for band edges close to either 0 or the Nyquist frequency (fs/2).

References [1] Rabiner, L.R., and O. Herrmann, “The Predictability of Certain
Optimum Finite Impulse Response Digital Filters,” IEEE Trans. on
Circuit Theory, Vol. CT-20, No. 4 (July 1973), pp. 401-408.

[2] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 156-157.
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See Also buttord | cheb1ord | cheb2ord | ellipord | kaiserord | firpm
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Purpose Raised cosine FIR filter design

Syntax b = firrcos(n,Fc,df)
b = firrcos(n,Fc,df,Fs)
b = firrcos(n,Fc,df,Fs,'bandwidth')
b = firrcos(n,Fc,df,Fs,'type')
b = firrcos(...,'type',delay)
b = firrcos(...,'type',delay,window)
b = firrcos(n,Fc,r,Fs,'rolloff')
b = firrcos(...,'rolloff','type')
[b,a] = firrcos(...)

Description b = firrcos(n,Fc,df) uses a default sampling frequency of Fs = 2.

b = firrcos(n,Fc,df,Fs) or, equivalently,

b = firrcos(n,Fc,df,Fs,'bandwidth') returns an order n lowpass
linear-phase FIR filter with a raised cosine transition band. The order n
must be even. The filter has cutoff frequency Fc, transition bandwidth
df, and sampling frequency Fs, all in hertz. df must be small enough
so that Fc ± df/2 is between 0 and Fs/2. The coefficients in b are
normalized so that the nominal passband gain is always equal to 1.

b = firrcos(n,Fc,df,Fs,'type') designs either a normal raised
cosine filter or a square root raised cosine filter according to how you
specify the string 'type'. Specify 'type' as:

• 'normal', for a regular raised cosine filter. This is the default,
and is also in effect when the 'type' argument is left empty, [],
or unspecified.

• 'sqrt', for a square root raised cosine filter.

b = firrcos(...,'type',delay) specifies an integer delay in the
range [0,n+1]. The default is n/2 for all n.

b = firrcos(...,'type',delay,window) applies a length n+1 window
to the designed filter to reduce the ripple in the frequency response.
window must be a length n+1 column vector. If no window is specified, a
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rectangular (rectwin) window is used. Care must be exercised when
using a window with a delay other than the default.

b = firrcos(n,Fc,r,Fs,'rolloff') interprets the third argument, r,
as the rolloff factor instead of the transition bandwidth, df. r must be
in the range [0,1].

b = firrcos(...,'rolloff','type') specifies the type of raised
cosine filter.

[b,a] = firrcos(...) always returns a = 1.

Examples Design an order 20 raised cosine FIR filter with cutoff frequency 0.25 of
the Nyquist frequency and a transition bandwidth of 0.25:

h = firrcos(20,0.25,0.25);
freqz(h,1)

See Also fir1 | fir2 | firls | firpm
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Purpose Type of linear phase FIR filter

Syntax t = firtype(b)
t = firtype(hd)
t = firtype(hm)
t = firtype(hs)

Description t = firtype(b) determines the type, t, (1 through 4) of an FIR filter
with coefficients, b. The filter must be real and have linear phase.

t = firtype(hd) determines the type of a discrete-time FIR filter
object hd. The filter must be real and have linear phase.

t = firtype(hm) determines the type of the multirate filter object hm.
The filter must be real and have linear phase. When hm has multiple
sections, all sections must be real FIR filters with linear phase. In this
case, t is a cell array containing the filter type of each section. You
must have the DSP System Toolbox software to use this syntax.

t = firtype(hs) determines the type of the FIR filter System object™
hs. The filter must be real and have linear phase. You must have the
DSP System Toolbox software to use this syntax.

Input
Arguments

b
vector

Filter coefficients for the FIR filter, specified as a double- or
single-precision real-valued row or column vector.

hd

dfilt filter object.

hm

Multirate mfilt filter object. Requires DSP System Toolbox.

hs
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Filter System object. Requires DSP System Toolbox. The function
supports the following filters .

• dsp.FIRFilter

• dsp.BiquadFilter

• dsp.FIRInterpolator

• dsp.CICInterpolator

• dsp.FIRDecimator

• dsp.CICDecimator

• dsp.FIRRateConverter

Output
Arguments

t

Filter type. t is either 1, 2, 3, or 4. These types are defined as follows:

• Type 1 — Even-order symmetric coefficients

• Type 2 — Odd-order symmetric coefficients

• Type 3 — Even-order antisymmetric coefficients

• Type 4 — Odd-order antisymmetric coefficients

Examples Determine the filter type for an FIR filter designed using the window
method. Plot the impulse response.

b1 = fir1(5,0.5);
t = firtype(b1)
stem(0:5,b1); set(gca,'xtick',0:5)

Determine the type of the default interpolator for L=4. Requires DSP
System Toolbox .

l = 4;
hm = mfilt.firinterp(l);
t = firtype(hm)
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See Also islinphase
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Purpose Flat Top weighted window

Syntax w = flattopwin(L)
w = flattopwin(L,sflag)

Description Flat Top windows have very low passband ripple (< 0.01 dB) and
are used primarily for calibration purposes. Their bandwidth is
approximately 2.5 times wider than a Hann window.

w = flattopwin(L) returns the L-point symmetric flat top window
in column vector w.

w = flattopwin(L,sflag) returns the L-point symmetric flat
top window using sflag window sampling, where sflag is either
'symmetric' or 'periodic'. The 'periodic' flag is useful for
DFT/FFT purposes, such as in spectral analysis. The DFT/FFT contains
an implicit periodic extension and the periodic flag enables a signal
windowed with a periodic window to have perfect periodic extension.
When 'periodic' is specified, flattopwin computes a length L+1
window and returns the first L points. When using windows for filter
design, the 'symmetric' flag should be used.

Algorithms Flat top windows are summations of cosines. The coefficients of a flat
top window are computed from the following equation

w n
n

N
n

N
n

N
( ) = ⎛

⎝⎜
⎞
⎠⎟
+ ⎛

⎝⎜
⎞
⎠⎟
− ⎛

⎝⎜
⎞
⎠⎟
+a  - a cos a cos a cos0 1 2 3

2 4 6π π π
aa cos4

8πn
N

⎛
⎝⎜

⎞
⎠⎟

where 0 ≤ ≤n N and w n( ) = 0 elsewhere and the window length is L =
N +1. The coefficient values are

Coefficient Value

a0 0.21557895

a1 0.41663158
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Coefficient Value

a2 0.277263158

a3 0.083578947

a4 0.006947368

Examples Create a 64-point, symmetric Flat Top window and view the window
using WVTool:

w = flattopwin(64);
wvtool(w);

References [1] D’Antona, Gabriele. and A. Ferrero, Digital Signal Processing for
Measurement Systems, New York: Springer Media, Inc., 2006, pp.
70–72.
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[2] Gade, Svend and H. Herlufsen, “Use of Weighting Functions in
DFT/FFT Analysis (Part I),” Brüel & Kjær, Windows to FFT Analysis
(Part I) Technical Review, No. 3, 1987, pp. 19-21.

See Also blackman | hamming | hann
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Purpose Frequency response of analog filters

Syntax h = freqs(b,a,w)
[h,w] = freqs(b,a,n)
freqs

Description freqs returns the complex frequency response H(jω) (Laplace
transform) of an analog filter

H s
B s
A s

b s b s b n

a s a s a

n n

m m
( )

( )
( )

( ) ( ) ( )

( ) ( ) (
= = + + + +

+ + +

−

−
1 2 1

1 2

1

1


 mm +1)

given the numerator and denominator coefficients in vectors b and a.

h = freqs(b,a,w) returns the complex frequency response of the
analog filter specified by coefficient vectors b and a. freqs evaluates
the frequency response along the imaginary axis in the complex plane
at the angular frequencies in rad/sec specified in real vector w, where w
is a vector containing more than one frequency.

[h,w] = freqs(b,a,n) uses n frequency points to compute the
frequency response h, where n is a real, scalar value. The frequency
vector w is auto-generated and has length n. If you omit n as an input,
200 frequency points are used. If you do not need the generated
frequency vector returned, you can use the form h = freqs(b,a,n) to
return only the frequency response h.

freqs with no output arguments plots the magnitude and phase
response versus frequency in the current figure window.

freqs works only for real input systems and positive frequencies.

Examples Find and graph the frequency response of the transfer function given by:

H s
s s

s s
( )

. .

.
= + +

+ +
0 2 0 3 1

0 4 1

2

2

a = [1 0.4 1];
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b = [0.2 0.3 1];
w = logspace(-1,1);
freqs(b,a,w)

You can also create the plot with

h = freqs(b,a,w);
mag = abs(h);
phase = angle(h);
subplot(2,1,1), loglog(w,mag)
subplot(2,1,2), semilogx(w,phase)

To convert to hertz, degrees, and decibels, use

f = w/(2*pi);
mag = 20*log10(mag);
phase = phase*180/pi;

Algorithms freqs evaluates the polynomials at each frequency point, then divides
the numerator response by the denominator response:
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s = i*w;
h = polyval(b,s)./polyval(a,s);

See Also abs | angle | freqz | invfreqs | logspace | polyval
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Purpose Real or complex frequency-sampled FIR filter from specification object

Syntax hd = design(d,'freqsamp')
hd = design(...,'filterstructure',structure)
hd = design(...,'window',window)

Description hd = design(d,'freqsamp') designs a frequency-sampled filter
specified by the filter specifications object d.

hd = design(...,'filterstructure',structure) returns a filter with
the filter structure you specify by the structure input argument.
structure is dffir by default and can be any one of the following filter
structures.

Structure String Description of Resulting Filter Structure

dffir Direct-form FIR filter

dffirt Transposed direct-form FIR filter

dfsymfir Symmetrical direct-form FIR filter

dfasymfir Asymmetrical direct-form FIR filter

fftfir Fast Fourier transform FIR filter

hd = design(...,'window',window) designs filters using the window
specified by the string in window. Provide the input argument window as

• A string for the window type. For example, use 'bartlett' , or
'hamming'. See window for the full list of windows available in the
Signal Processing Toolbox User’s Guide.

• A function handle that references the window function. When the
window function requires more than one input, use a cell array to
hold the required arguments. The first example shows a cell array
input argument.

• The window vector itself.
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Examples These examples design FIR filters that have arbitrary magnitude
responses. In the first filter, the response has three distinct sections
and the resulting filter is real.

The second example creates a complex filter.

b1 = 0:0.01:0.18;

b2 = [.2 .38 .4 .55 .562 .585 .6 .78];

b3 = [0.79:0.01:1];

a1 = .5+sin(2*pi*7.5*b1)/4; % Sinusoidal response section.

a2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear response section.

a3 = .2+18*(1-b3).^2; % Quadratic response section.

f = [b1 b2 b3];

a = [a1 a2 a3];

n = 300;

d = fdesign.arbmag('n,f,a',n,f,a); % First specifications object.

hd = design(d,'freqsamp','window',{@kaiser,.5}); % Filter.

fvtool(hd)

The plot from FVTool shows the response for hd.
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Now design the arbitrary-magnitude complex FIR filter. Recall that
vector f contains frequency locations and vector a contains the desired
filter response values at the locations specified in f.

f = [-1 -.93443 -.86885 -.80328 -.7377 -.67213 -.60656 -.54098 ...

-.47541,-.40984 -.34426 -.27869 -.21311 -.14754 -.081967 ...

-.016393 .04918 .11475,.18033 .2459 .31148 .37705 .44262 ...

.5082 .57377 .63934 .70492 .77049,.83607 .90164 1];

a = [.0095848 .021972 .047249 .099869 .23119 .57569 .94032 ...

.98084 .99707,.99565 .9958 .99899 .99402 .99978 .99995 .99733 ...

.99731 .96979 .94936,.8196 .28502 .065469 .0044517 .018164 ...

.023305 .02397 .023141 .021341,.019364 .017379 .016061];
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n = 48;

d = fdesign.arbmag('n,f,a',n,f,a); % Second spec. object.

hdc = design(d,'freqsamp','window','rectwin'); % Filter.

fvtool(hdc)

FVTool shows you the response for hdc from -1 to 1 in normalized
frequency because the filter’s transfer function is not symmetric around
0. Since the Fourier transform of the filter does not exhibit conjugate
symmetry, design(d,...) returns a complex—valued filter for hdc .

See Also design | designmethods | fdesign.arbmag
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Purpose Frequency response of digital filter

Syntax [h,w] = freqz(b,a,n)
[h,w] = freqz(sos,n)
[h,w] = freqz(Hd,n)
[h,w] = freqz(...,n,'whole')
h = freqz(...,w)
[h,f] = freqz(...,fs)
h = freqz(...,f,fs)
[h,f] = freqz(...,n,'whole',fs)
freqz(...)

Description [h,w] = freqz(b,a,n) returns the frequency response vector h and
the corresponding angular frequency vector w for the digital filter whose
transfer function is determined by the (real or complex) numerator
and denominator polynomials represented in the vectors b and a,
respectively. The vectors h and w are both of length n. n must be a
positive integer greater than or equal to two. The angular frequency
vector w has values ranging from 0 to π radians per sample. If you do
not specify the integer n, or you specify it as the empty vector [], the
frequency response is calculated using the default value of 512 samples.

[h,w] = freqz(sos,n) returns the n-point complex frequency response
corresponding to the second order sections matrix, sos. sos is a K-by-6
matrix, where the number of sections, K, must be greater than or equal
to 2. If the number of sections is less than 2, freqz considers the input
to be the numerator vector, b. Each row of sos corresponds to the
coefficients of a second order (biquad) filter. The i-th row of the sos
matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

[h,w] = freqz(Hd,n) returns the n-point complex frequency response
for the dfilt filter object, Hd, or the array of dfilt filter objects. If Hd
is an array of dfilt objects, each column of h is the complex-valued
frequency response of the corresponding dfilt object.

[h,w] = freqz(...,n,'whole') uses n sample points around the entire
unit circle to calculate the frequency response. The frequency vector w
has length n and has values ranging from 0 to 2π radians per sample.

1-570



freqz

h = freqz(...,w) returns the frequency response vector h calculated
at the frequencies (in radians per sample) supplied by the vector w. w
must be a vector and have a minimum length of two.

[h,f] = freqz(...,fs) returns the frequency response vector h
and the corresponding frequency vector f for the digital filter whose
transfer function is determined by the (real or complex) numerator
and denominator polynomials represented in the vectors b and a,
respectively. The vectors h and f are both of length n. For this syntax,
the frequency response is calculated using the sampling frequency
specified by the scalar fs (in hertz). The frequency vector f is calculated
in units of hertz (Hz). The frequency vector f has values ranging from 0
to fs/2 Hz.

h = freqz(...,f,fs) returns the frequency response vector h
calculated at the frequencies (in Hz) supplied in the vector f. The vector
f must have at least two elements.

[h,f] = freqz(...,n,'whole',fs) uses n points around the entire
unit circle to calculate the frequency response. The frequency vector f
has length n and has values ranging from 0 to fs Hz.

freqz(...) plots the magnitude and unwrapped phase of the frequency
response. The plot is displayed in the current figure window. If the
input is the numerator and denominator coefficients, a second-order
sections matrix, or a single dfilt object, the magnitude and phase
response of the single filter is displayed. If the input is an array of
dfilt objects, the magnitude and unwrapped phase responses of all
filters in the array are displayed.

Note If the input to freqz is single precision, the frequency response
is calculated using single-precision arithmetic. The output, h, is single
precision.

Tips It is best to choose a power of 2 for the third input argument n, because
freqz uses an FFT algorithm to calculate the frequency response. See
the reference description of fft for more information.
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Examples Plot the magnitude and phase response of an FIR filter:

b = fir1(80,0.5,kaiser(81,8));
freqz(b,1);

The same example using a dfilt object and displaying the result in the
Filter Visualization Tool (fvtool) is

d=fdesign.lowpass('N,Fc',80,0.5);
Hd=design(d);
freqz(Hd);
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Algorithms The frequency response [1] of a digital filter can be interpreted as the
transfer function evaluated at z = ejω. You can always write a rational
transfer function in the following form.

H e

b k e

a l e

j k
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l
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freqz determines the transfer function from the (real or complex)
numerator and denominator polynomials you specify, and returns the
complex frequency response H(ejω) of a digital filter. The frequency
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response is evaluated at sample points determined by the syntax that
you use.

freqz generally uses an FFT algorithm to compute the frequency
response whenever you don’t supply a vector of frequencies as an input
argument. It computes the frequency response as the ratio of the
transformed numerator and denominator coefficients, padded with
zeros to the desired length.

When you do supply a vector of frequencies as an input argument, then
freqz evaluates the polynomials at each frequency point using Horner’s
method of nested polynomial evaluation [1], dividing the numerator
response by the denominator response.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 203-205.

See Also abs | angle | fft | filter | freqs | impz | invfreqs | logspace
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Purpose Open Filter Visualization Tool

Syntax fvtool(b,a)
fvtool(sos)
fvtool(b1,a1,b2,a2,...bN,aN)
fvtool(sos1,sos2,...,sosN)
fvtool(Hd)
fvtool(Hd1,Hd2,...,HdN)
h = fvtool(...)

Description fvtool(b,a) opens FVTool and displays the magnitude response of
the digital filter defined with numerator, b and denominator, a. Using
FVTool you can display the phase response, group delay, impulse
response, step response, pole-zero plot, and coefficients of the filter. You
can export the displayed response to a file with File > Export.

Note If the input to fvtool is single precision, the magnitude response
is calculated using single-precision arithmetic.

fvtool(sos) opens FVTool and displays the magnitude response of the
digital filter defined with the matrix of second order sections, sos. sos is
a K-by-6 matrix, where the number of sections, K, must be greater than
or equal to 2. If the number of sections is less than 2, fvtool considers
the input to be the numerator vector, b. Each row of sos corresponds to
the coefficients of a second order (biquad) filter. The i-th row of the sos
matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

fvtool(b1,a1,b2,a2,...bN,aN) opens FVTool and displays the
magnitude responses of multiple filters defined with numerators,
b1...b1N and denominators, a1...aN.

fvtool(sos1,sos2,...,sosN) opens FVTool and displays the
magnitude responses of multiple filters defined with second order
section matrices, sos1, sos2, ...sosN.
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fvtool(Hd) opens FVTool and displays the magnitude responses for
the dfilt filter object, Hd, or the array of dfilt filter objects.

fvtool(Hd1,Hd2,...,HdN) opens FVTool and displays the magnitude
responses of the filters in the dfilt objects Hd1, Hd2, ...HdN.

If you have the DSP System Toolbox product installed, you can also use
fvtool(H) and fvtool(H1,H2,...) to analyze:

• Quantized filter objects (dfilt with arithmetic set to 'single' or
'fixed')

• Multirate filter (mfilt) objects

• Any of the following filter System objects: dsp.FIRFilter,
dsp.IIRFilter, dsp.AllpoleFilter, dsp.BiquadFilter,
dsp.FIRInterpolator, dsp.CICInterpolator, dsp.FIRDecimator,
dsp.CICDecimator, or dsp.FIRRateConverter

• Adaptive filter (adaptfilt) objects

When the input filter is a dfilt or mfilt object, FVTool
performs fixed-point analysis if the arithmetic property of the
filter objects is set to ’fixed’. However, for filter System objects,
fvtool(H,'Arithmetic',ARITH,...) analyzes H, based on the
arithmetic specified in the ARITH input.

ARITH can be one of 'double', 'single', or 'fixed'. The 'Arithmetic'
input is only relevant for the analysis of filter System objects. The
arithmetic setting ARITH, applies to all the filter System objects that
you input to fvtool. When you specify 'double' or 'single', the
function performs double- or single-precision analysis. When you
specify 'fixed' , the arithmetic changes depending on the setting of
the CoefficientDataType property and whether the System object is
locked or unlocked.

1-576



fvtool

Details for Fixed-Point Arithmetic

System Object
State

Coefficient Data
Type

Rule

Unlocked 'Same as input' The function assumes
that the coefficient
data type is signed, 16
bit, and autoscaled.
The function
performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.

Locked 'Same as input' When the input data
type is 'double' or
'fixed', the function
assumes that the
coefficient data type
is signed, 16-bit,
and autoscaled. The
function performs
fixed-point analysis
based on this
assumption.

Locked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.
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If you do not specify the arithmetic for non-CIC structures, and the
System object is in an unlocked state, the function uses double-precision
arithmetic. If the System object is locked, the function performs
analysis based on the locked input data type. CIC structures only
support fixed-point arithmetic.

Analysis methods noisepsd and freqrespest have behavior
restrictions in fvtool. To see the rules, click the links to these methods.

h = fvtool(...) returns a figure handle h. You can use this handle to
interact with FVTool from the command line. See “Controlling FVTool
from the MATLAB Command Line” on page 1-584.

FVTool has two toolbars.
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• An extended version of the MATLAB plot editing toolbar. The
following table shows the toolbar icons specific to FVTool.

Icon Description

Restore default view. This view displays buffer regions
around the data and shows only significant data. To see
the response using standard MATLAB plotting, which
shows all data values, use View > Full View.

Toggle legend

Toggle grid

Link to FDATool (appears only if FVTool was started
from FDATool)

Toggle Add mode/Replace mode (appears only if FVTool
was launched from FDATool)

• Analysis toolbar with the following icons

Magnitude response of the current filter. See freqz and
zerophase for more information.

To see the zero-phase response, right-click the y-axis
label of the Magnitude plot and select Zero-phase from
the context menu.

Phase response of the current filter. See phasez for more
information.

Superimposes the magnitude response and the phase
response of the current filter. See freqz for more
information.

Shows the group delay of the current filter. Group
delay is the average delay of the filter as a function of
frequency. See grpdelay for more information.
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Shows the phase delay of the current filter. Phase delay
is the time delay the filter imposes on each component of
the input signal. See phasedelay for more information.

Impulse response of the current filter. The impulse
response is the response of the filter to a impulse input.
See impz for more information.

Step response of the current filter. The step response is
the response of the filter to a step input. See stepz for
more information.

Pole-zero plot, which shows the pole and zero locations
of the current filter on the z-plane. See zplane for more
information.

Filter coefficients of the current filter, which depend on
the filter structure (e.g., direct-form, lattice, etc.) in a
text box. For SOS filters, each section is displayed as a
separate filter.

Detailed filter information.

Linking to FDATool

In fdatool, selecting View > Filter Visualization Tool or the Full
View Analysis toolbar button when an analysis is displayed starts
FVTool for the current filter. You can synchronize FDATool and FVTool
with the FDAToolLink toolbar button . Any changes made to the
filter in FDATool are immediately reflected in FVTool.

Two FDATool link modes are provided via the Set Link Mode toolbar
button:

• Replace — removes the filter currently displayed in FVTool and
inserts the new filter.

• Add — retains the filter currently displayed in FVTool and adds
the new filter to the display.
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Modifying the Axes

You can change the x- or y-axis units by right-clicking the mouse on
the axis label or by right-clicking on the plot and selecting Analysis
Parameters. Available options for the axes units are as follows.

Plot X-Axis Units Y-Axis Units

Magnitude
Normalized
Frequency
Linear Frequency

Magnitude
Magnitude(dB)
Magnitude squared
Zero-Phase

Phase
Normalized
Frequency
Linear Frequency

Phase
Continuous Phase
Degrees
Radians

Magnitude and
Phase Normalized

Frequency
Linear Frequency

(y-axis on left side)

Magnitude
Magnitude(dB)
Magnitude squared
Zero-Phase

(y-axis on right side)

Phase
Continuous Phase
Degrees
Radians

Group Delay
Normalized
Frequency
Linear Frequency

Samples
Time
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Plot X-Axis Units Y-Axis Units

Phase Delay
Normalized
Frequency
Linear Frequency

Degrees
Radians

Impulse
Response Samples

Time

Amplitude

Step Response
Samples
Time

Amplitude

Pole-Zero Real Part Imaginary Part

Modifying the Plot

You can use any of the plot editing toolbar buttons to change the
properties of your plot.

Analysis Parameters are parameters that apply to the displayed
analyses. To display them, right-click in the plot area and select
Analysis Parameters from the menu. (Note that you can access the
menu only if the Edit Plot button is inactive.) The following analysis
parameters are displayed. (If more than one response is displayed,
parameters applicable to each plot are displayed.) Not all of these
analysis fields are displayed for all types of plots:

• Normalized Frequency — if checked, frequency is normalized
between 0 and 1, or if not checked, frequency is in Hz

• Frequency Scale — y-axis scale (Linear or Log)

• Frequency Range— range of the frequency axis or Specify freq.
vector

• Number of Points — number of samples used to compute the
response

• Frequency Vector — vector to use for plotting, if Specify freq.
vector is selected in Frequency Range.
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• Magnitude Display — y-axis units (Magnitude, Magnitude (dB),
Magnitude squared, or Zero-Phase)

• Phase Units — y-axis units (Degrees or Radians)

• Phase Display— type of phase plot (Phase or Continuous Phase)

• Group Delay Units— y-axis units (Samples or Time)

• Specify Length— length type of impulse or step response (Default
or Specified)

• Length— number of points to use for the impulse or step response

In addition to the above analysis parameters, you can change the plot
type for Impulse and Step Response plots by right-clicking and selecting
Line with Marker, Stem or Line from the context menu. You can
change the x-axis units by right-clicking the x-axis label and selecting
Samples or Time.

To save the displayed parameters as the default values to use when
FDATool or FVTool is opened, click Save as default.

To restore the default values, click Restore original defaults.

Data tips display information about a particular point in the plot. See
“Data Cursor — Displaying Data Values Interactively” in the MATLAB
documentation for information on data tips.

If you have the DSP System Toolbox software, FVTool displays a
specification mask along with your designed filter on a magnitude plot.

Note To use View > Passband zoom, your filter must have been
designed using fdesign or FDATool. Passband zoom is not provided
for cascaded integrator-comb (CIC) filters because CICs do not have
conventional passbands.

Overlaying a Response

You can overlay a second response on the plot by selecting
Analysis > Overlay Analysis and selecting an available response.
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A second y-axis is added to the right side of the response plot. The
Analysis Parameters dialog box shows parameters for the x-axis and
both y-axes. See “Example 2” on page 1-588 for a sample Analysis
Parameters dialog box.

Controlling FVTool from the MATLAB Command Line

After you obtain the handle for FVTool, you can control some aspects
of FVTool from the command line. In addition to the standard
Handle Graphics® properties (see Handle Graphics in the MATLAB
documentation), FVTool has the following properties:

• 'Filters'— returns a cell array of the filters in FVTool.

• 'Analysis' — displays the specified type of analysis plot. The
following table lists the analyses and corresponding analysis strings.
Note that the only analyses that use filter internals are magnitude
response estimate and round-off noise power, which are available
only with the DSP System Toolbox product.

Analysis Type Analysis String

Magnitude plot 'magnitude'

Phase plot 'phase'

Magnitude and phase plot `freq'

Group delay plot 'grpdelay'

Phase delay plot `phasedelay'

Impulse response plot 'impulse'

Step response plot 'step'

Pole-zero plot 'polezero'

Filter coefficients 'coefficients'

Filter information 'info'
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Analysis Type Analysis String

Magnitude response estimate

(available only with the DSP
System Toolbox product,
see freqrespest for more
information)

'magestimate'

Round-off noise power

(available only with the DSP
System Toolbox product, see
noisepsd for more information)

'noisepower'

• 'Grid'— controls whether the grid is 'on' or 'off'

• 'Legend'— controls whether the legend is 'on' or 'off'

• 'Fs' — controls the sampling frequency of filters in FVTool. The
sampling frequency vector must be of the same length as the number
of filters or a scalar value. If it is a vector, each value is applied to
its corresponding filter. If it is a scalar, the same value is applied
to all filters.

• SosViewSettings — (This option is available only if you have the
DSP System Toolbox product.) For second-order sections filters,
this controls how the filter is displayed. The SOSViewSettings
property contains an object so you must use this syntax to set it:
set(h.SOSViewSettings,'View',viewtype), where viewtype is
one of the following:

- 'Complete'— Displays the complete response of the overall filter

- 'Individual'— Displays the response of each section separately

- ’Cumulative’ — Displays the response for each section accumulated
with each prior section. If your filter has three sections, the first
plot shows section one, the second plot shows the accumulation of
sections one and two, and the third plot show the accumulation of
all three sections.
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You can also define whether to use SecondaryScaling,
which determines where the sections should be split. The
secondary scaling points are the scaling locations between
the recursive and the nonrecursive parts of the section.
The default value is false, which does not use secondary
scaling. To turn on secondary scaling, use this syntax:
set(h.SOSViewSettings,'View','Cumulative',true)

- 'UserDefined'— Allows you to define which sections to display
and the order in which to display them. Enter a cell array where
each section is represented by its index. If you enter one index,
only that section is plotted. If you enter a range of indices, the
combined response of that range of sections is plotted. For
example, if your filter has four sections, entering {1:4} plots the
combined response for all four sections, and entering {1,2,3,4}
plots the response for each section individually.

Note You can change other properties of FVTool from the command
line using the set function. Use get(h) to view property tags and
current property settings.

You can use the following methods with the FVTool handle.

addfilter(h,filtobj) adds a new filter to FVTool. The new filter,
filtobj, must be a dfilt filter object. You can specify the sampling
frequency of the new filter with addfilter(h,filtobj,'Fs',10).

setfilter(h,filtobj) replaces the filter in FVTool with the filter
specified in filtobj. You can set the sampling frequency as described
above.

deletefilter(h, index) deletes the filter at the FVTool cell array
index location.

legend(h,str1,str2,...) creates a legend in FVTool by associating
str1 with filter 1, str2 with filter 2, etc. See legend in the MATLAB
documentation for information.
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For more information on using FVTool from the command line, see
the example fvtooldemo.

Examples Example 1

Display the magnitude response of an elliptic filter, starting FVTool
from the command line:

[b,a]=ellip(6,3,50,300/500);
fvtool(b,a);
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Example 2

Display and analyze multiple FIR filters, starting FVTool from the
command line. Then, display the associated analysis parameters for
the magnitude:

b1 = firpm(20,[0 0.4 0.5 1],[1 1 0 0]);
b2 = firpm(40,[0 0.4 0.5 1],[1 1 0 0]);
fvtool(b1,1,b2,1);
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Example 3

Create a lowpass, equiripple filter of order 20 in FDATool and display it
in FVTool.

fdatool % Start FDATool

Set these parameters in fdatool:

Parameter Setting

Response Type Lowpass

Design Method FIR Equiripple

Filter Order Specify order: 20

Density factor 16

Frequency specifications --
units

Normalized (0 to 1)

Wpass 0.4
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Parameter Setting

Wstop 0.5

Magnitude specifications --
Wpass and Wstop

1

and then click the Design Filter button.

Click the Full View Analysis button to start FVTool.
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Example 4

Create an elliptic filter and use some of FVTool’s figure handle
commands:

[b,a]=ellip(6,3,50,300/500);
h = fvtool(b,a); % Create handle, h and start FVTool

% with magnitude plot
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set(h,'Analysis','phase') % Change display to phase plot
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set(h,'Legend','on') % Turn legend on
legend(h,'Phase plot') % Add legend text
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get(h) % View all properties

% FVTool-specific properties are

% at the end of this list.

AlphaMap: [1x64 double]

CloseRequestFcn: 'closereq'

Color: [0.8314 0.8157 0.7843]

ColorMap: [64x3 double]

CurrentAxes: 208.0084

CurrentCharacter: ''

CurrentObject: []

CurrentPoint: [0 0]

DockControls: 'on'

DoubleBuffer: 'on'
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FileName: ''

FixedColors: [11x3 double]

IntegerHandle: 'on'

InvertHardcopy: 'on'

KeyPressFcn: ''

MenuBar: 'none'

MinColormap: 64

Name: 'Filter Visualization Tool - Phase Response'

NextPlot: 'new'

NumberTitle: 'on'

PaperUnits: 'inches'

PaperOrientation: 'portrait'

PaperPosition: [0.2500 2.5000 8 6]

PaperPositionMode: 'manual'

PaperSize: [8.5000 11]

PaperType: 'usletter'

Pointer: 'arrow'

PointerShapeCData: [16x16 double]

PointerShapeHotSpot: [1 1]

Position: [360 292 560 345]

Renderer: 'painters'

RendererMode: 'auto'

Resize: 'on'

ResizeFcn: ''

SelectionType: 'normal'

Toolbar: 'auto'

Units: 'pixels'

WindowButtonDownFcn: ''

WindowButtonMotionFcn: ''

WindowButtonUpFcn: ''

WindowStyle: 'normal'

BeingDeleted: 'off'

ButtonDownFcn: ''

Children: [15x1 double]

Clipping: 'on'

CreateFcn: ''

DeleteFcn: ''

1-595



fvtool

BusyAction: 'queue'

HandleVisibility: 'on'

HitTest: 'on'

Interruptible: 'on'

Parent: 0

Selected: 'off'

SelectionHighlight: 'on'

Tag: 'filtervisualizationtool'

UIContextMenu: []

UserData: []

Visible: 'on'

AnalysisToolbar: 'on'

FigureToolbar: 'on'

Filters: {[1x1 dfilt.df2t]}

Grid: 'on'

Legend: 'on'

DesignMask: 'off'

Fs: 1

SOSViewSettings: [1x1 dspopts.sosview]

Analysis: 'phase'

OverlayedAnalysis: ''

ShowReference: 'on'

PolyphaseView: 'off'

NormalizedFrequency: 'on'

FrequencyScale: 'Linear'

FrequencyRange: '[0, pi)'

NumberofPoints: 8192

FrequencyVector: [1x256 double]

PhaseUnits: 'Radians'

PhaseDisplay: 'Phase'

See Also fdatool | sptool
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Purpose Fast Walsh–Hadamard transform

Syntax y = fwht(x)
y = fwht(x,n)
y = fwht(x,n,ordering)

Description y = fwht(x) returns the coefficients of the discrete Walsh–Hadamard
transform of the input x. If x is a matrix, the FWHT is calculated on
each column of x. The FWHT operates only on signals with length equal
to a power of 2. If the length of x is less than a power of 2, its length is
padded with zeros to the next greater power of two before processing.

y = fwht(x,n) returns the n-point discrete Walsh–Hadamard
transform, where n must be a power of 2. x and n must be the same
length. If x is longer than n, x is truncated; if x is shorter than n, x is
padded with zeros.

y = fwht(x,n,ordering) specifies the ordering to use for the returned
Walsh–Hadamard transform coefficients. To specify ordering, you must
enter a value for the length n or, to use the default behavior, specify an
empty vector [] for n. Valid values for ordering are the following strings:

Ordering Description

'sequency' Coefficients in order of increasing sequency
value, where each row has an additional zero
crossing. This is the default ordering.

'hadamard' Coefficients in normal Hadamard order.

'dyadic' Coefficients in Gray code order, where a single
bit change occurs from one coefficient to the next.

For more information on the Walsh functions and ordering, see
“Walsh–Hadamard Transform”.

Examples This example shows a simple input signal and the resulting transformed
signal.

x = [19 -1 11 -9 -7 13 -15 5];
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y = fwht(x);

y contains nonzero values at these locations: 0, 1, 3, and 6. By forming
the Walsh functions with the sequency values of 0, 1, 3, and 6, we can
recreate x, as follows.

w0 = [1 1 1 1 1 1 1 1];
w1 = [1 1 1 1 -1 -1 -1 -1];
w3 = [1 1 -1 -1 1 1 -1 -1];
w6 = [1 -1 1 -1 -1 1 -1 1];
w = 2*w0 + 3*w1 + 4*w3 + 10*w6;
y1=fwht(w);
x1 = ifwht(y);

Algorithms The fast Walsh-Hadamard tranform algorithm is similar to the
Cooley-Tukey algorithm used for the FFT. Both use a butterfly structure
to determine the transform coefficients. See the references for details.

References [1] Beauchamp, K.G., Applications of Walsh and Related Functions,
Academic Press, 1984.

[2] Beer, T., Walsh Transforms, American Journal of Physics, Volume
49, Issue 5, May 1981.

See Also ifwht | dct | idct | fft | ifft
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Purpose Gaussian-modulated sinusoidal pulse

Syntax yi = gauspuls(t,fc,bw)
yi = gauspuls(t,fc,bw,bwr)
[yi,yq] = gauspuls(...)
[yi,yq,ye] = gauspuls(...)
tc = gauspuls('cutoff',fc,bw,bwr,tpe)

Description gauspuls generates Gaussian-modulated sinusoidal pulses.

yi = gauspuls(t,fc,bw) returns a unity-amplitude Gaussian RF
pulse at the times indicated in array t, with a center frequency fc in
hertz and a fractional bandwidth bw, which must be greater than 0. The
default value for fc is 1000 Hz and for bw is 0.5.

yi = gauspuls(t,fc,bw,bwr) returns a unity-amplitude Gaussian RF
pulse with a fractional bandwidth of bw as measured at a level of bwr dB
with respect to the normalized signal peak. The fractional bandwidth
reference level bwr must be less than 0, because it indicates a reference
level less than the peak (unity) envelope amplitude. The default value
for bwr is -6 dB. Note that the fractional bandwidth is specified in
terms of power ratios. This corresponds to the -3 dB point expressed
in magnitude ratios.

[yi,yq] = gauspuls(...) returns both the in-phase and quadrature
pulses.

[yi,yq,ye] = gauspuls(...) returns the RF signal envelope.

tc = gauspuls('cutoff',fc,bw,bwr,tpe) returns the cutoff time tc
(greater than or equal to 0) at which the trailing pulse envelope falls
below tpe dB with respect to the peak envelope amplitude. The trailing
pulse envelope level tpe must be less than 0, because it indicates a
reference level less than the peak (unity) envelope amplitude. The
default value for tpe is -60 dB.

Tips Default values are substituted for empty or omitted trailing input
arguments.
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Examples Plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at
a rate of 1 MHz. Truncate the pulse where the envelope falls 40 dB
below the peak:

tc = gauspuls('cutoff',50e3,0.6,[],-40);
t = -tc : 1e-6 : tc;
yi = gauspuls(t,50e3,0.6);
plot(t,yi)

See Also chirp | cos | diric | pulstran | rectpuls | sawtooth | sin | sinc
| square | tripuls
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Purpose Gaussian FIR pulse-shaping filter

Syntax h = gaussfir(bt)
h = gaussfir(bt,n)
h = gaussfir(bt,n,o)

Description This filter is used primarily in Gaussian minimum shift keying (GMSK)
communications applications.

h = gaussfir(bt) designs a low pass FIR Gaussian pulse-shaping
filter and returns the filter coefficients in the h vector. bt is the 3-dB
bandwidth-symbol time product where b is the one-sided bandwidth
in hertz and t is in seconds. Smaller bt products produce larger
pulse widths. The number of symbol periods (n) defaults to 3 and the
oversampling factor (o) defaults to 2.

The length of the impulse response of the filter is given by 2*o*n+1.
The coefficients h are normalized so that the nominal passband gain
is always equal to 1.

h = gaussfir(bt,n) uses n number of symbol periods between the
start of the filter impulse response and its peak.

h = gaussfir(bt,n,o) uses an oversampling factor of o, which is the
number of samples per symbol.

Examples Design a Gaussian filter to be used in a Global System for Mobile (GSM)
communications GMSK scheme.

bt = .3; % 3-dB bandwidth-symbol time
o = 8; % Oversampling factor
n = 2; % 2 symbol periods to the filters peak
h = gaussfir(bt,n,o);
hfvt = fvtool(h,'impulse');
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References [1] Rappaport T.S., Wireless Communications Principles and Practice,
2nd Edition, Prentice Hall, 2001.

[2] Krishnapura N., Pavan S., Mathiazhagan C., Ramamurthi B., “A
Baseband Pulse Shaping Filter for Gaussian Minimum Shift Keying,”
Proceedings of the 1998 IEEE International Symposium on Circuits
and Systems, 1998.

See Also firrcos | rcosfir
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Purpose Gaussian window

Syntax w = gausswin(N)
w=gausswin(N,Alpha)

Description w = gausswin(N) returns an N-point Gaussian window in the column
vector w. N is a positive integer. The coefficients of a Gaussian window
are computed from the following equation.
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the standard deviation of a Gaussian random variable. The exact
correspondence with the standard deviation, σ, of a Gaussian probability
density function is
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The value of α defaults to 2.5.

w=gausswin(N,Alpha) returns an N-point Gaussian window where
Alpha is proportional to reciprocal of the standard deviation. The width
of the window is inversely related to the value of α; a larger value of α
produces a more narrow window.

Note If the window appears to be clipped, increase the number of
points (N).

Examples Create a 64-point Gaussian window and display the result in WVTool:

L=64;
wvtool(gausswin(L))

1-603



gausswin

Gaussian Window and the Fourier Transform

This example demonstrates that the Fourier transform of the Gaussian
window is also Gaussian with a reciprocal standard deviation. This is an
illustration of the time-frequency uncertainty principle. Additionally,
the example shows that the output of gausswin is equivalent to the
equation given in the “Description” on page 1-603 section.

Create a Gaussian window of length 64 by using gausswin and the
defining equation. Set α=8, which results in a standard deviation of
64/16=4. Accordingly, you expect that the Gaussian is essentially
limited to the mean plus or minus 3 standard deviations, or an
approximate support of [-12, 12].

N = 64;
n = -(N-1)/2:(N-1)/2;
alpha = 8;
y = exp(-1/2*(alpha*n/(N/2)).^2);
w = gausswin(N,alpha);
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plot(n,w,'r')
hold on;
plot(n,y,'k')
title('Gaussian Window N = 64');

Obtain the Fourier transform of the Gaussian window and use fftshift
to center the Fourier transform at zero frequency (DC).

figure
wdft = fftshift(fft(w));
freq = linspace(-pi,pi,length(wdft));
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plot(freq,abs(wdft),'linewidth',2)
xlabel('Radians/Sample');
title('Fourier Transform of Gaussian Window');

The Fourier transform of the Gaussian window is also Gaussian with a
standard deviation that is the reciprocal of the time-domain standard
deviation.
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References [1] Harris, F.J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66,
No. 1 (January 1978).

[2] Roberts, Richard A., and C.T. Mullis. Digital Signal Processing.
Reading, MA: Addison-Wesley, 1987, pp. 135-136.

See Also chebwin | kaiser | tukeywin | window | wintool | wvtool
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Purpose Gaussian monopulse

Syntax y = gmonopuls(t,fc)
tc = gmonopuls('cutoff',fc)

Description y = gmonopuls(t,fc) returns samples of the unity-amplitude
Gaussian monopulse with center frequency fc (in hertz) at the times
indicated in array t. By default, fc = 1000 Hz.

tc = gmonopuls('cutoff',fc) returns the time duration between the
maximum and minimum amplitudes of the pulse.

Tips Default values are substituted for empty or omitted trailing input
arguments.

Examples Example 1

Plot a 2 GHz Gaussian monopulse sampled at a rate of 100 GHz:

fc = 2E9; fs=100E9;
tc = gmonopuls('cutoff',fc);
t = -2*tc : 1/fs : 2*tc;
y = gmonopuls(t,fc); plot(t,y)
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Example 2

Construct a pulse train from the monopulse of Example 1 using a
spacing of 7.5 ns:

fc = 2E9; fs=100E9; % Center freq, sample freq
D = [2.5 10 17.5]' * 1e-9; % Pulse delay times
tc = gmonopuls('cutoff',fc); % Width of each pulse
t = 0 : 1/fs : 150*tc; % Signal evaluation time
yp = pulstran(t,D,@gmonopuls,fc);
plot(t,yp)
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See Also chirp | gauspuls | pulstran | rectpuls | tripuls
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Purpose Discrete Fourier transform with second-order Goertzel algorithm

Syntax dft_data = goertzel(data)
dft_data = goertzel(data,freq_indices)
dft_data = goertzel(data,freq_indices,dim)

Description dft_data = goertzel(data) returns the discrete Fourier transform
(DFT) of the input data data using a second-order Goertzel algorithm.
If data is a matrix, goertzel computes the DFT of each column
separately.

dft_data = goertzel(data,freq_indices) returns the DFT for the
frequency indices freq_indices.

dft_data = goertzel(data,freq_indices,dim) computes the DFT
of the matrix data along the dimension dim.

Examples Estimate the frequency of the two tones generated by pressing the 1
button on a telephone keypad:

f=[697 770 852 941 1209 1336 1477];
% frequencies for numbers 0:9 on keypad
Fs = 8000; %sampling frequency
N = 205; %Number of points
% Tones generated by a "1": 697 and 1209 Hz
data = sum(sin(2*pi*[697;1209]*(0:N-1)/Fs));
% Indices of the DFT for the frequencies f
freq_indices = round(f/Fs*N)+1;
%Compute DFT using Goertzel algorithm
dft_data = goertzel(data,freq_indices);
%Plot the DFT magnitudes
stem(f,abs(dft_data));
set(gca,'xtick',f); xlabel('Hz');
ylabel('Magnitude');
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Algorithms The Goertzel algorithm implements the DFT as a recursive difference
equation. To establish this difference equation, express the DFT
as the convolution of an N-point input x(n) with the impulse

response h n W u nN
kn( ) ( )= − , where W eN

kn i k N− −= 2 / and u(n) is the unit
step sequence.

The z-transform of the impulse response is:
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The direct form II implementation is:
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X(n) vk(n) yk(n)

+

-1

+ +

z-1

z-1

References Proakis, J.G. and D.G. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications, Upper Saddle River, NJ: Prentice Hall,
1996, pp. 480–481.

Alternatives You can also compute the DFT with:

• fft less efficient than the Goertzel algorithm when you only need the
DFT at a few frequencies.

• czt the chirp z-transform. czt calculates the z-transform of an input
on a circular or spiral contour and includes the DFT as a special case.

1-613



grpdelay

Purpose Average filter delay (group delay)

Syntax [gd,w] = grpdelay(b,a)
[gd,w] = grpdelay(b,a,n)
[gd,w] = grpdelay(sos,n)
[gd,w] = grpdelay(Hd,n)
[gd,f] = grpdelay(b,a,n,fs)
[gd,w] = grpdelay(b,a,n,'whole')
[gd,f] = grpdelay(b,a,n,'whole', fs)
gd = grpdelay(b,a,w)
gd = grpdelay(b,a,f,fs)
grpdelay(...)

Description The group delay of a filter is a measure of the average delay of the
filter as a function of frequency. It is the negative first derivative of
the phase response of the filter. If the frequency response of a filter
is H(ejω), then the group delay is
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d
d
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where θ(ω) is the phase, or argument, of phase H(ejω).

[gd,w] = grpdelay(b,a) returns the group delay, gd, of the
discrete-time filter specified by the input vectors, b and a. The input
vectors are the coefficients for the numerator, b, and denominator, a,
polynomials in z-1. The Z-transform of the discrete-time filter is

H z
B z
A z

b n z

a l z

l

N
l

l

M
l

( )
( )
( )

( )

( )

, 


















0

1

0

1

1

1

The filter’s group delay is evaluated at 512 equally-spaced points in
the interval [0,π) on the unit circle. The evaluation points on the unit
circle are returned in w.
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[gd,w] = grpdelay(b,a,n) returns the group delay of the discrete-time
filter evaluated at n equally-spaced points on the unit circle in the
interval [0,π). n is a positive integer.

[gd,w] = grpdelay(sos,n) returns the group delay for the second
order sections matrix, sos. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections
is less than 2, grpdelay considers the input to be the numerator vector,
b. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

[gd,w] = grpdelay(Hd,n) returns the group delay for the dfilt filter
object, Hd, or the array of dfilt filter objects. If Hd is an array of dfilt
objects, each column of gd is the group delay of the corresponding dfilt
object.

[gd,f] = grpdelay(b,a,n,fs) specifies a positive sampling frequency
fs in hertz. It returns a length n vector f containing the frequency
points in hertz at which the group delay is evaluated. f contains n
points between 0 and fs/2.

[gd,w] = grpdelay(b,a,n,'whole') and

[gd,f] = grpdelay(b,a,n,'whole', fs) use n points around the
whole unit circle (from 0 to 2π, or from 0 to fs).

gd = grpdelay(b,a,w) and

gd = grpdelay(b,a,f,fs) return the group delay evaluated at the
angular frequencies in w (in radians/sample) or in f (in cycles/unit
time)), respectively, where fs is the sampling frequency. w and f are
vectors with at least two elements.

grpdelay(...) plots the group delay versus frequency. The plot is
displayed in fvtool. If the input is the numerator and denominator
coefficients, a second order sections matrix, or a single dfilt object, the
group delay of the single filter is displayed. If the input is an array of
dfilt objects, the group delays of all filters in the array are displayed.

grpdelay works for both real and complex filters.
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Note If the input to grpdelay is single precision, the group delay is
calculated using single-precision arithmetic. The output, gd, is single
precision.

Examples Plot the group delay of Butterworth filter b(z)/a(z):

[b,a] = butter(6,0.2);
grpdelay(b,a,128)

The same example using a dfilt object and displaying the result in the
Filter Visualization Tool (fvtool) is

[b,a] = butter(6,0.2);
Hd=dfilt.df1(b,a);
grpdelay(Hd,128)
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Plot both the group and phase delays of a system on the same graph:

[b,a] = butter(6,0.2);
gd = grpdelay(b,a,512);
gd(1) = []; % Avoid NaNs
[h,w] = freqz(b,a,512); h(1) = []; w(1) = [];
pd = -unwrap(angle(h))./w;
plot(w,gd,w,pd,':')
axis([0 pi min(gd) max(gd)]);
xlabel('Frequency (rad/sec)'); grid;
legend('Group Delay','Phase Delay');
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Algorithms grpdelay multiplies the filter coefficients by a unit ramp. After Fourier
transformation, this process corresponds to differentiation.

See Also cceps | fft | freqz | fvtool | hilbert | icceps | rceps
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Purpose Hamming window

Syntax w = hamming(L)
w = hamming(L,'sflag')

Description w = hamming(L) returns an L-point symmetric Hamming window in the
column vector w. L should be a positive integer. The coefficients of a
Hamming window are computed from the following equation.

w n
n
N

n N( ) . . cos ,= − ⎛
⎝⎜

⎞
⎠⎟

≤ ≤0 54 0 46 2 0π

The window length is L N= +1 .

w = hamming(L,'sflag') returns an L-point Hamming window using
the window sampling specified by 'sflag', which can be either
'periodic' or 'symmetric' (the default). The 'periodic' flag
is useful for DFT/FFT purposes, such as in spectral analysis. The
DFT/FFT contains an implicit periodic extension and the periodic flag
enables a signal windowed with a periodic window to have perfect
periodic extension. When 'periodic' is specified, hamming computes a
length L+1 window and returns the first L points. When using windows
for filter design, the 'symmetric' flag should be used.

Note If you specify a one-point window (L=1), the value 1 is returned.

Examples Create a 64-point Hamming window and display the result in WVTool:

L=64;
wvtool(hamming(L))
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 447-448.

See Also blackman | flattopwin | hann | window | wintool | wvtool
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Purpose Hann (Hanning) window

Syntax w = hann(L)
w = hann(L,'sflag')

Description w = hann(L) returns an L-point symmetric Hann window in the column
vector w. L must be a positive integer. The coefficients of a Hann
window are computed from the following equation.
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The window length is L N= +1 .

w = hann(L,'sflag') returns an L-point Hann window using the
window sampling specified by 'sflag', which can be either 'periodic'
or 'symmetric' (the default). The 'periodic' flag is useful for
DFT/FFT purposes, such as in spectral analysis. The DFT/FFT contains
an implicit periodic extension and the periodic flag enables a signal
windowed with a periodic window to have perfect periodic extension.
When 'periodic' is specified, hann computes a length L+1 window and
returns the first L points. When using windows for filter design, the
'symmetric' flag should be used.

Note If you specify a one-point window (L=1), the value 1 is returned.

Examples Create a 64-point Hann window and display the result in WVTool:

L=64;
wvtool(hann(L))
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 447-448.

See Also blackman | flattopwin | hamming | window | wintool | wvtool
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Purpose Discrete-time analytic signal using Hilbert transform

Syntax x = hilbert(xr)
x = hilbert(xr,n)

Description x = hilbert(xr) returns a complex helical sequence, sometimes
called the analytic signal, from a real data sequence. The analytic
signal x = xr + i*xi has a real part, xr, which is the original data,
and an imaginary part, xi, which contains the Hilbert transform. The
imaginary part is a version of the original real sequence with a 90°
phase shift. Sines are therefore transformed to cosines and vice versa.
The Hilbert transformed series has the same amplitude and frequency
content as the original real data and includes phase information that
depends on the phase of the original data.

If xr is a matrix, x = hilbert(xr) operates columnwise on the matrix,
finding the Hilbert transform of each column.

x = hilbert(xr,n) uses an n point FFT to compute the Hilbert
transform. The input data xr is zero-padded or truncated to length n,
as appropriate.

The Hilbert transform is useful in calculating instantaneous attributes
of a time series, especially the amplitude and frequency. The
instantaneous amplitude is the amplitude of the complex Hilbert
transform; the instantaneous frequency is the time rate of change of the
instantaneous phase angle. For a pure sinusoid, the instantaneous
amplitude and frequency are constant. The instantaneous phase,
however, is a sawtooth, reflecting the way in which the local phase
angle varies linearly over a single cycle. For mixtures of sinusoids, the
attributes are short term, or local, averages spanning no more than
two or three points.

Reference [1] describes the Kolmogorov method for minimum phase
reconstruction, which involves taking the Hilbert transform of the
logarithm of the spectral density of a time series. The toolbox function
rceps performs this reconstruction.
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For a discrete-time analytic signal x, the last half of fft(x) is zero, and
the first (DC) and center (Nyquist) elements of fft(x) are purely real.

Examples xr = [1 2 3 4];
x = hilbert(xr)
x

You can see that the imaginary part, imag(x) = [1 -1 -1 1], is the
Hilbert transform of xr, and the real part, real(x) = [1 2 3 4], is
simply xr itself. Note that the last half of fft(x) = [10 -4+4i -2 0]
is zero (in this example, the last half is just the last element), and
that the DC and Nyquist elements of fft(x), 10 and -2 respectively,
are purely real.

Algorithms The analytic signal for a sequence x has a one-sided Fourier transform,
that is, negative frequencies are 0. To approximate the analytic signal,
hilbert calculates the FFT of the input sequence, replaces those FFT
coefficients that correspond to negative frequencies with zeros, and
calculates the inverse FFT of the result.

In detail, hilbert uses a four-step algorithm:

1 It calculates the FFT of the input sequence, storing the result in
a vector x.

2 It creates a vector h whose elements h(i) have the values:

• 1 for i = 1, (n/2)+1

• 2 for i = 2, 3, ... , (n/2)

• 0 for i = (n/2)+2, ... , n

3 It calculates the element-wise product of x and h.

4 It calculates the inverse FFT of the sequence obtained in step 3 and
returns the first n elements of the result.
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If the input data xr is a matrix, hilbert operates in a similar manner,
extending each step above to handle the matrix case.

References [1] Claerbout, J.F., Fundamentals of Geophysical Data Processing,
McGraw-Hill, 1976, pp.59-62.

[2] Marple, S.L., “Computing the discrete-time analytic signal via FFT,”
IEEE Transactions on Signal Processing, Vol. 47, No. 9 (September
1999), pp. 2600-2603.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, 2nd ed., Prentice-Hall, 1998.

See Also fft | ifft | rceps
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Purpose Inverse complex cepstrum

Syntax x = icceps(xhat,nd)

Description
Note icceps only works on real data.

x = icceps(xhat,nd) returns the inverse complex cepstrum of the
real data sequence xhat, removing nd samples of delay. If xhat was
obtained with cceps(x), then the amount of delay that was added to x
was the element of round(unwrap(angle(fft(x)))/pi) corresponding
to π radians.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989.

See Also cceps | hilbert | rceps | unwrap
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Purpose Inverse discrete cosine transform

Syntax x = idct(y)
x = idct(y,n)

Description The inverse discrete cosine transform reconstructs a sequence from its
discrete cosine transform (DCT) coefficients. The idct function is the
inverse of the dct function.

x = idct(y) returns the inverse discrete cosine transform of y
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and N = length(x), which is the same as length(y). The series is
indexed from n = 1 and k = 1 instead of the usual n = 0 and k = 0
because MATLAB vectors run from 1 to N instead of from 0 to N-1.

x = idct(y,n) appends zeros or truncates the vector y to length n
before transforming.

If y is a matrix, idct transforms its columns.

References [1] Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall,
1989.

[2] Pennebaker, W.B., and J.L. Mitchell, JPEG Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993, Chapter 4.

See Also dct | dct2 | idct2 | ifft
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Purpose Inverse Fast Walsh–Hadamard transform

Syntax y = ifwht(x)
y = ifwht(x,n)
y = ifwht(x,n,ordering)

Description y = ifwht(x) returns the coefficients of the inverse discrete fast
Walsh–Hadamard transform of the input x. If x is a matrix, the inverse
fast Walsh-Hadamard tranform is calculated on each column of x. The
inverse fast Walsh-Hadamard tranform operates only on signals with
length equal to a power of 2. If the length of x is less than a power of 2,
its length is padded with zeros to the next greater power of two before
processing.

y = ifwht(x,n) returns the n-point inverse discrete Walsh–Hadamard
transform, where n must be a power of 2.

y = ifwht(x,n,ordering) specifies the ordering to use for the
returned inverse Walsh–Hadamard transform coefficients. To specify
ordering, you must enter a value for the length n or, to use the default
behavior, specify an empty vector [] for n. Valid values for ordering
are the following strings:

Ordering Description

'sequency' Coefficients in order of ascending sequency value,
where each row has an additional zero crossing.
This is the default ordering.

'hadamard' Coefficients in normal Hadamard order.

'dyadic' Coefficients in Gray code order, where a single
bit change occurs from one coefficient to the next.

Algorithms The inverse fast Walsh-Hadamard tranform algorithm is similar to the
Cooley-Tukey algorithm used for the inverse FFT. Both use a butterfly
structure to determine the transform coefficients. See the references
below for details.
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References [1] Beauchamp, K.G., Applications of Walsh and Related Functions,
Academic Press, 1984.

[2] Beer, T., Walsh Transforms, American Journal of Physics, Volume
49, Issue 5, May 1981.

See Also fwht | dct | idct | fft | ifft
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Purpose Impulse invariance method for analog-to-digital filter conversion

Syntax [bz,az] = impinvar(b,a,fs)
[bz,az] = impinvar(b,a,fs,tol)

Description [bz,az] = impinvar(b,a,fs) creates a digital filter with numerator
and denominator coefficients bz and az, respectively, whose impulse
response is equal to the impulse response of the analog filter with
coefficients b and a, scaled by 1/fs. If you leave out the argument fs, or
specify fs as the empty vector [], it takes the default value of 1 Hz.

[bz,az] = impinvar(b,a,fs,tol) uses the tolerance specified by
tol to determine whether poles are repeated. A larger tolerance
increases the likelihood that impinvar interprets closely located poles
as multiplicities (repeated ones). The default is 0.001, or 0.1% of a pole’s
magnitude. Note that the accuracy of the pole values is still limited to
the accuracy obtainable by the roots function.

Examples Example 1

Convert an analog lowpass filter to a digital filter using impinvar with
a sampling frequency of 10 Hz:

[b,a] = butter(4,0.3,'s');
[bz,az] = impinvar(b,a,10);

Example 2

Illustrate the relationship between analog and digital impulse
responses [2].

Note This example requires the impulse function from Control System
Toolbox™ software.

The steps used in this example are:
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1 Create an analog Butterworth filter

2 Use impinvar with a sampling frequency Fs of 10 Hz to scale the
coefficients by 1/Fs. This compensates for the gain that will be
introduced in Step 4 below.

3 Use Control System Toolbox impulse function to plot the
continuous-time unit impulse response of an LTI system.

4 Plot the digital impulse response, multiplying the numerator by
a constant (Fs) to compensate for the 1/Fs gain introduced in the
impulse response of the derived digital filter.

[b,a] = butter(4,0.3,'s');
[bz,az] = impinvar(b,a,10);
sys = tf(b,a);
impulse(sys);
hold on;
impz(10*bz,az,[],10);

Zooming the resulting plot shows that the analog and digital impulse
responses are the same.
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Algorithms impinvar performs the impulse-invariant method of analog-to-digital
transfer function conversion discussed in reference [1]:

1 It finds the partial fraction expansion of the system represented by
b and a.

2 It replaces the poles p by the poles exp(p/fs).

3 It finds the transfer function coefficients of the system from the
residues from step 1 and the poles from step 2.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley
& Sons, 1987, pp.206-209.

[2] Antoniou, Andreas, Digital Filters, McGraw Hill, Inc, 1993,
pp.221-224.

See Also bilinear | lp2bp | lp2bs | lp2hp | lp2lp
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Purpose Impulse response of digital filter

Syntax [h,t] = impz(b,a)
[h,t] = impz(sos)
[h,t] = impz(Hd)
[h,t] = impz(...,n)
[h,t] = impz(...,n,fs)
impz(...)

Description [h,t] = impz(b,a) returns the impulse response of the filter with
numerator coefficients b and denominator coefficients a. impz chooses
the number of samples and returns the response in the column vector
h and sample times in the column vector t (where t = [0:n-1]', and
n = length(t) is computed automatically).

Note If the input to impz is single precision, the impulse response is
calculated using single-precision arithmetic. The output, h, is single
precision.

[h,t] = impz(sos) returns the impulse response for the second order
sections matrix, sos. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections
is less than 2, impz considers the input to be the numerator vector,
b. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

[h,t] = impz(Hd) returns the impulse response for the dfilt filter
object, Hd, or the array of dfilt filter objects. If Hd is an array of dfilt
objects, each column of h is the impulse response of the corresponding
dfilt object.

[h,t] = impz(...,n) computes n samples of the impulse response
when n is an integer (t = [0:n-1]'). If n is a vector of integers, impz
computes the impulse response at those integer locations, starting the
response computation from 0 (and t = n or t = [0 n]). If, instead of n,
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you include the empty vector [] for the second argument, the number of
samples is computed automatically by default.

[h,t] = impz(...,n,fs) computes n samples and produces a vector t
of length n so that the samples are spaced 1/fs units apart.

impz(...) with no output arguments plots the impulse response of the
filter. If you input the filter coefficients or second order sections matrix,
the current figure window is used. If you input a dfilt object or array
of filter objects, fvtool is used to plot the impulse response.

Note impz works for both real and complex input systems.

Examples Plot the first 50 samples of the impulse response of a fourth-order
lowpass elliptic filter with cutoff frequency of 0.4 times the Nyquist
frequency:

[b,a] = ellip(4,0.5,20,0.4);
impz(b,a,50)
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The same example using a dfilt object and displaying the result in the
Filter Visualization Tool (fvtool) is

[b,a] = ellip(4,0.5,20,0.4);
Hd = dfilt.df1(b,a)
impz(Hd,50)

Algorithms impz filters a length n impulse sequence using

filter(b,a,[1 zeros(1,n-1)])

and plots the results using stem.
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To compute n in the auto-length case, impz either uses n = length(b)
for the FIR case or first finds the poles using p = roots(a), if
length(a) is greater than 1.

If the filter is unstable, n is chosen to be the point at which the term
from the largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to
the largest amplitude pole is 5*10^-5 of its original amplitude.

If the filter is oscillatory (poles on the unit circle only), impz computes
five periods of the slowest oscillation.

If the filter has both oscillatory and damped terms, n is chosen to equal
five periods of the slowest oscillation or the point at which the term
due to the largest (nonunity) amplitude pole is 5*10^-5 of its original
amplitude, whichever is greater.

impz also allows for delays in the numerator polynomial. The number of
delays is incorporated into the computation for the number of samples.

See Also impulse | stem
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Purpose Impulse response length

Syntax len = impzlength(b,a)
len = impzlength(sos)
len = impzlength(hd)
len = impzlength(hs)
len = impzlength( ___ ,tol)

Description len = impzlength(b,a) returns the impulse response length for the
causal discrete-time filter with the rational system function specified by
the numerator, b, and denominator, a, polynomials in z-1. For stable IIR
filters, len is the effective impulse response sequence length. Terms in
the IIR filter’s impulse response after the len-th term are essentially
zero.

len = impzlength(sos) returns the effective impulse response length
for the IIR filter specified by the second order sections matrix, sos. sos
is a K-by-6 matrix, where the number of sections, K, must be greater
than or equal to 2. If the number of sections is less than 2, impzlength
considers the input to be the numerator vector, b. Each row of sos
corresponds to the coefficients of a second order (biquad) filter. The
i-th row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1)
ai(2) ai(3)].

len = impzlength(hd) returns the impulse response length for the
dfilt or mfilt filter object, hd. You must have the DSP System Toolbox
software to use impzlength with an mfilt object. You can also input an
array of filter objects. If hd is an array of filter objects, each column of
len is the impulse response length of the corresponding filter object.

len = impzlength(hs) returns the impulse response length for the
filter System object, hs. You must have the DSP System Toolbox
software to use impzlength with a filter System object.
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len = impzlength( ___ ,tol) specifies a tolerance for estimating
the effective length of an IIR filter’s impulse response. By default,
tol is 5e-5. Increasing the value of tol estimates a shorter effective
length for an IIR filter’s impulse response. Decreasing the value of tol
produces a longer effective length for an IIR filter’s impulse response.

Input
Arguments

b - Numerator coefficients
vector | scalar

Numerator coefficients, specified as a scalar (allpole filter) or a vector.

Example: b = fir1(20,0.25)

Data Types
single | double
Complex Number Support: Yes

a - Denominator coefficients
vector | scalar

Denominator coefficients, specified as a scalar (FIR filter) or vector.

Data Types
single | double
Complex Number Support: Yes

sos - Matrix of second order sections
matrix

Matrix of second order sections, specified as a K-by-2 matrix. The
system function of the K-th biquad filter has the rational z-transform

H z
B B z B z

A A z A zk
k k k

k k k
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The coefficients in the K-th row of the matrix, sos, are ordered as
follows

[ ( ) ( ) ( ) ( ) ( ) ( )]B B B A A Ak k k k k k1 2 3 1 2 3
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The frequency response of the filter is system function evaluated on
the unit circle with

z ei f 2

hd - Filter object

Filter object, specified as a dfilt or mfilt object. You must have the
DSP System Toolbox software to input an mfilt object.

tol - Tolerance for IIR filter effective impulse response length
5e-5 (default) | positive scalar

Tolerance for IIR filter effective impulse response length, specified as a
positive number. The tolerance determines the term in the absolutely
summable sequence after which subsequent terms are considered to
be 0. The default tolerance is 5e-5. Increasing the tolerance returns
a shorter effective impulse response sequence length. Decreasing the
tolerance returns a longer effective impulse response sequence length.

hs - Filter System object

Filter System object, specified as one of the following:

• dsp.FIRFilter

• dsp.BiquadFilter

• dsp.FIRInterpolator

• dsp.CICInterpolator

• dsp.FIRDecimator

• dsp.CICDecimator

• dsp.FIRRateConverter
Using impzlength with a filter System object requires the DSP System
Toolbox software.
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Output
Arguments

len - Length of impulse response
positive integer

Length of the impulse response, specified as a positive integer. For
stable IIR filters with absolutely summable impulse responses,
impzlength returns an effective length for the impulse response beyond
which the coefficients are essentially zero. You can control this cutoff
point by specifying the optional tol input argument.

Examples IIR Filter Effective Impulse Response Length — — Coefficients

Create a lowpass allpole IIR filter with a pole at 0.9. Calculate the
effective impulse response length, obtain the impulse response, and
plot the result.

b = 1;
a = [1 -0.9];
len = impzlength(b,a)
[h,t] = impz(b,a);
stem(t,h)
h(len)

The value of the impulse response at the estimate length has decayed to
approximately 10-6.

Impulse Response Length — — Filter Objects

Design IIR Butterworth and FIR equiripple filters for data sampled at 1
kHz. The passband frequency is 100 Hz and the stopband frequency is
150 Hz. The passband ripple is 0.5 dB and there is 60 dB of stopband
attenuation. Obtain dfilt objects for the filters and compare the filter
impulse response sequence lengths.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',100,150,0.5,60,1000);
Hd1 = design(d,'butter');
Hd2 = design(d,'equiripple');
len = impzlength([Hd1 Hd2])
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IIR Filter Effective Impulse Response Length — — Second
Order Sections

Design a 4-th order lowpass elliptic filter with a cutoff frequency of
0.4π radians/sample. Specify 1 dB of passband ripple and 60 dB of
stopband attenuation. Design the filter in pole-zero-gain form and
obtain the second order section matrix using zp2sos. Determine the
effective impulse response sequence length from the second order
sections matrix.

[z,p,k] = ellip(4,1,60,.4);
[sos,g] = zp2sos(z,p,k);
len = impzlength(sos)

Impulse Response Length of Filter System object

This example requires DSP System Toolbox software.

Design a 4-th order lowpass elliptic filter with a cutoff frequency of 0.4π
radians/sample. Specify 1 dB of passband ripple and 60 dB of stopband
attenuation. Design the filter in pole-zero-gain form and obtain the
second order section matrix using zp2sos. Create a biquad filter System
object and input the System object to impzlength.

[z,p,k] = ellip(4,1,60,.4);
[sos,g] = zp2sos(z,p,k);
hBqdFilt = dsp.BiquadFilter('Structure','Direct form I',...

'SOSMatrix', sos,...
'ScaleValues',g);

len = impzlength(hBqdFilt)

See Also impz | zp2sos
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Purpose Interpolation — increase sampling rate by integer factor

Syntax y = interp(x,r)
y = interp(x,r,l,alpha)
[y,b] = interp(x,r,l,alpha)

Description Interpolation increases the original sampling rate for a sequence to a
higher rate. interp performs lowpass interpolation by inserting zeros
into the original sequence and then applying a special lowpass filter.
The filter returned by intfilt is identical to the filter used by interp.

y = interp(x,r) increases the sampling rate of x by a factor of r. The
interpolated vector y is r times longer than the original input x.

y = interp(x,r,l,alpha) specifies l (filter length) and alpha (cut-off
frequency). The default value for l is 4 and the default value for alpha
is 0.5.

[y,b] = interp(x,r,l,alpha) returns vector b containing the filter
coefficients used for the interpolation.

Examples Interpolate a signal by a factor of four:

t = 0:0.001:1; % Time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = interp(x,4);
subplot(121);
stem(x(1:30));
axis([0 30 -2 2]);
title('Original Signal');
subplot(122);
stem(y(1:120));
title('Interpolated Signal');
axis([0 120 -2 2]);
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Algorithms interp uses the lowpass interpolation Algorithm 8.1 described in [1]:

1 It expands the input vector to the correct length by inserting zeros
between the original data values.

2 It designs a special symmetric FIR filter that allows the original data
to pass through unchanged and interpolates between so that the
mean-square errors between the interpolated points and their ideal
values are minimized.

3 It applies the filter to the input vector to produce the interpolated
output vector.

The length of the FIR lowpass interpolating filter is 2*l*r+1. The
number of original sample values used for interpolation is 2*l.
Ordinarily, l should be less than or equal to 10. The original signal
is assumed to be band limited with normalized cutoff frequency
0≤alpha≤1, where 1 is half the original sampling frequency (the Nyquist
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frequency). The default value for l is 4 and the default value for alpha
is 0.5.

Diagnostics If r is not an integer, interp gives the following error message:

Resampling rate R must be an integer.

References [1] Programs for Digital Signal Processing, IEEE Press, New York,
1979, Algorithm 8.1.

See Also decimate | downsample | interp1 | intfilt | resample | spline |
upfirdn | upsample
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Purpose Interpolation FIR filter design

Syntax b = intfilt(l,p,alpha)
b = intfilt(l,n,'Lagrange')

Description b = intfilt(l,p,alpha) designs a linear phase FIR filter that
performs ideal bandlimited interpolation using the nearest 2*p nonzero
samples, when used on a sequence interleaved with l-1 consecutive
zeros every l samples. It assumes an original bandlimitedness of alpha
times the Nyquist frequency. The returned filter is identical to that
used by interp. b is length 2*l*p-1

alpha is inversely proportional to the transition bandwidth of the
filter and it also affects the bandwith of the don’t-care regions in
the stopband. Specifying alpha allows you to specify how much of
the Nyquist interval your input signal occupies. This is beneficial,
particularly for signals to be interpolated, because it allows you to
increase the transition bandwidth without affecting the interpolation
and results in better stopband attenuation for a given l and p. If you
set alpha to 1, your signal is assumed to occupy the entire Nyquist
interval. Setting alpha to less than one allows for don’t-care regions in
the stopband. For example, if your input occupies half the Nyquist
interval, you could set alpha to 0.5.

b = intfilt(l,n,'Lagrange') designs an FIR filter that performs
nth-order Lagrange polynomial interpolation on a sequence interleaved
with l-1 consecutive zeros every r samples. b has length (n + 1)*l for n
even, and length (n + 1)*l-1 for n odd. If both n and l are even, the
filter designed is not linear phase.

Both types of filters are basically lowpass and have a gain of l in the
passband..

Examples Design a digital interpolation filter to upsample a signal by four, using
the bandlimited method:

alpha = 0.5; % "Bandlimitedness" factor
h1 = intfilt(4,2,alpha); % Bandlimited interpolation
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The filter h1 works best when the original signal is bandlimited to alpha
times the Nyquist frequency. Create a bandlimited noise signal:

x = filter(fir1(40,0.5),1,randn(200,1)); % Bandlimit

Now zero pad the signal with three zeros between every sample. The
resulting sequence is four times the length of x:

xr = reshape([x zeros(length(x),3)]',4*length(x),1);

Interpolate using the filter command:

y = filter(h1,1,xr);

y is an interpolated version of x, delayed by seven samples (the
group-delay of the filter). Zoom in on a section of one hundred samples
to see this:

plot(100:200,y(100:200),7+(101:4:196),x(26:49),'o')

intfilt also performs Lagrange polynomial interpolation of the
original signal. For example, first-order polynomial interpolation is just
linear interpolation, which is accomplished with a triangular filter:

h2 = intfilt(4,1,'l'); % Lagrange interpolation

Algorithms The bandlimited method uses firls to design an interpolation FIR
filter. The polynomial method uses Lagrange’s polynomial interpolation
formula on equally spaced samples to construct the appropriate filter.

See Also decimate | downsample | interp | resample | upsample
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Purpose Identify continuous-time filter parameters from frequency response data

Syntax [b,a] = invfreqs(h,w,n,m)
[b,a] = invfreqs(h,w,n,m,wt)
[b,a] = invfreqs(h,w,n,m,wt,iter)
[b,a] = invfreqs(h,w,n,m,wt,iter,tol)
[b,a] = invfreqs(h,w,n,m,wt,iter,tol,'trace')
[b,a] = invfreqs(h,w,'complex',n,m,...)

Description invfreqs is the inverse operation of freqs. It finds a continuous-time
transfer function that corresponds to a given complex frequency
response. From a laboratory analysis standpoint, invfreqs is useful in
converting magnitude and phase data into transfer functions.

[b,a] = invfreqs(h,w,n,m) returns the real numerator and
denominator coefficient vectors b and a of the transfer function
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whose complex frequency response is given in vector h at the frequency
points specified in vector w. Scalars n and m specify the desired orders
of the numerator and denominator polynomials.

The length of h must be the same as the length of w. invfreqs uses
conj(h) at -w to ensure the proper frequency domain symmetry for
a real filter.

[b,a] = invfreqs(h,w,n,m,wt) weights the fit-errors versus
frequency, where wt is a vector of weighting factors the same length as w.

[b,a] = invfreqs(h,w,n,m,wt,iter) and

[b,a] = invfreqs(h,w,n,m,wt,iter,tol) provide a superior algorithm
that guarantees stability of the resulting linear system and searches for
the best fit using a numerical, iterative scheme. The iter parameter
tells invfreqs to end the iteration when the solution has converged,
or after iter iterations, whichever comes first. invfreqs defines
convergence as occurring when the norm of the (modified) gradient
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vector is less than tol, where tol is an optional parameter that defaults
to 0.01. To obtain a weight vector of all ones, use

invfreqs(h,w,n,m,[],iter,tol)

[b,a] = invfreqs(h,w,n,m,wt,iter,tol,'trace') displays a textual
progress report of the iteration.

[b,a] = invfreqs(h,w,'complex',n,m,...) creates a complex filter.
In this case no symmetry is enforced, and the frequency is specified in
radians between -π and π.

Tips When building higher order models using high frequencies, it is
important to scale the frequencies, dividing by a factor such as half the
highest frequency present in w, so as to obtain well conditioned values of
a and b. This corresponds to a rescaling of time.

Examples Example 1

Convert a simple transfer function to frequency response data and then
back to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqs(b,a,64);
[bb,aa] = invfreqs(h,w,4,5)
bb =

1.0000 2.0000 3.0000 2.0000 3.0000
aa =

1.0000 2.0000 3.0000 2.0000 1.0000 4.0000

Notice that bb and aa are equivalent to b and a, respectively. However,
aa has poles in the right half-plane and thus the system is unstable.
Use invfreqs’s iterative algorithm to find a stable approximation to
the system:

[bbb,aaa] = invfreqs(h,w,4,5,[],30)
bbb =

0.6816 2.1015 2.6694 0.9113 -0.1218
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aaa =
1.0000 3.4676 7.4060 6.2102 2.5413 0.0001

Example 2

Suppose you have two vectors, mag and phase, that contain magnitude
and phase data gathered in a laboratory, and a third vector w of
frequencies. You can convert the data into a continuous-time transfer
function using invfreqs:

[b,a] = invfreqs(mag.*exp(j*phase),w,2,3);

Algorithms By default, invfreqs uses an equation error method to identify the best
model from the data. This finds b and a in

min ( ) ( ) ( ) ( )
,b a k

n
wt k h k A w k B w k( ) − ( )

=
∑ 2

1

by creating a system of linear equations and solving them with the
MATLAB \ operator. Here A(w(k)) and B(w(k)) are the Fourier
transforms of the polynomials a and b, respectively, at the frequency
w(k), and n is the number of frequency points (the length of h and
w). This algorithm is based on Levi [1]. Several variants have been
suggested in the literature, where the weighting function wt gives less
attention to high frequencies.

The superior (“output-error”) algorithm uses the damped Gauss-Newton
method for iterative search [2], with the output of the first algorithm as
the initial estimate. This solves the direct problem of minimizing the
weighted sum of the squared error between the actual and the desired
frequency response points.
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References [1] Levi, E.C., “Complex-Curve Fitting,” IRE Trans. on Automatic
Control, Vol.AC-4 (1959), pp.37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Englewood
Cliffs, NJ: Prentice-Hall, 1983.

See Also freqs | freqz | invfreqz | prony
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Purpose Identify discrete-time filter parameters from frequency response data

Syntax [b,a] = invfreqz(h,w,n,m)
[b,a] = invfreqz(h,w,n,m,wt)
[b,a] = invfreqz(h,w,n,m,wt,iter)
[b,a] = invfreqz(h,w,n,m,wt,iter,tol)
[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace')
[b,a] = invfreqz(h,w,'complex',n,m,...)

Description invfreqz is the inverse operation of freqz; it finds a discrete-time
transfer function that corresponds to a given complex frequency
response. From a laboratory analysis standpoint, invfreqz can be used
to convert magnitude and phase data into transfer functions.

[b,a] = invfreqz(h,w,n,m) returns the real numerator and
denominator coefficients in vectors b and a of the transfer function
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whose complex frequency response is given in vector h at the frequency
points specified in vector w. Scalars n and m specify the desired orders
of the numerator and denominator polynomials.

Frequency is specified in radians between 0 and π, and the length of h
must be the same as the length of w. invfreqz uses conj(h) at -w to
ensure the proper frequency domain symmetry for a real filter.

[b,a] = invfreqz(h,w,n,m,wt) weights the fit-errors versus
frequency, where wt is a vector of weighting factors the same length as w.

[b,a] = invfreqz(h,w,n,m,wt,iter) and

[b,a] = invfreqz(h,w,n,m,wt,iter,tol) provide a superior
algorithm that guarantees stability of the resulting linear system and
searches for the best fit using a numerical, iterative scheme. The iter
parameter tells invfreqz to end the iteration when the solution has
converged, or after iter iterations, whichever comes first. invfreqz
defines convergence as occurring when the norm of the (modified)
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gradient vector is less than tol, where tol is an optional parameter
that defaults to 0.01. To obtain a weight vector of all ones, use

invfreqz(h,w,n,m,[],iter,tol)

[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace') displays a textual
progress report of the iteration.

[b,a] = invfreqz(h,w,'complex',n,m,...) creates a complex filter.
In this case no symmetry is enforced, and the frequency is specified in
radians between -π and π.

Examples Convert a simple transfer function to frequency response data and then
back to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqz(b,a,64);
[bb,aa] = invfreqz(h,w,4,5)
bb =

1.0000 2.0000 3.0000 2.0000 3.0000
aa =

1.0000 2.0000 3.0000 2.0000 1.0000 4.0000

Notice that bb and aa are equivalent to b and a, respectively. However,
aa has poles outside the unit circle and thus the system is unstable.
Use invfreqz’s iterative algorithm to find a stable approximation to
the system:

[bbb,aaa] = invfreqz(h,w,4,5,[],30)
bbb =

0.2427 0.2788 0.0069 0.0971 0.1980
aaa =

1.0000 -0.8944 0.6954 0.9997 -0.8933 0.6949

Algorithms By default, invfreqz uses an equation error method to identify the best
model from the data. This finds b and a in
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min ( ) ( ) ( ) ( )
,b a k

n
wt k h k A w k B w k( ) − ( )

=
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1

by creating a system of linear equations and solving them with
the MATLAB \ operator. Here A(ω(k)) and B(ω(k)) are the Fourier
transforms of the polynomials a and b, respectively, at the frequency
ω(k), and n is the number of frequency points (the length of h and w).
This algorithm is a based on Levi [1].

The superior (“output-error”) algorithm uses the damped Gauss-Newton
method for iterative search [2], with the output of the first algorithm as
the initial estimate. This solves the direct problem of minimizing the
weighted sum of the squared error between the actual and the desired
frequency response points.
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References [1] Levi, E.C., “Complex-Curve Fitting,” IRE Trans. on Automatic
Control, Vol. AC-4 (1959), pp. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall,
1983.

See Also freqs | freqz | invfreqz | prony
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Purpose Determine whether filter is allpass

Syntax flag = isallpass(b,a)
flag = isallpass(hd)
flag = isallpass(sos)
flag = islinphase(...,tol)
flag = isallpass(hs,...)
flag = isallpass(hs,'Arithmetic',arithtype)

Description flag = isallpass(b,a) returns a logical output, flag, equal to true
if the filter specified by numerator coefficients, b, and denominator
coefficients, a, is an allpass filter. If the filter is not an allpass filter,
flag is equal to false.

flag = isallpass(hd) returns trueif the filter object, hd, is an allpass
filter.

flag = isallpass(sos) returns true if the filter specified by second
order sections matrix, sos, is an allpass filter. sos is a K-by-6 matrix,
where the number of sections, K, must be greater than or equal to
2. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = islinphase(...,tol) uses the tolerance, tol, to determine
when two numbers are close enough to be considered equal. If not
specified, tol, defaults to eps^(2/3). Specifying a tolerance may be
most helpful in fixed-point allpass filters.

flag = isallpass(hs,...) returns true if the filter System object hs
is an allpass filter. You must have the DSP System Toolbox software
to use this syntax.

flag = isallpass(hs,'Arithmetic',arithtype) analyzes the filter
System object hs based on the specified arithtype. arithtype can
be 'double', 'single', or 'fixed'. When you specify 'double' or
'single', the function performs double- or single-precision analysis.
When you specify 'fixed' , the arithmetic changes depending on the
setting of the CoefficientDataType property and whether the System
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object is locked or unlocked. You must have the DSP System Toolbox
software to use this syntax.

Details for Fixed-Point Arithmetic

System Object
State

Coefficient Data
Type

Rule

Unlocked 'Same as input' The function assumes
that the coefficient
data type is signed, 16
bit, and autoscaled.
The function
performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.

Locked 'Same as input' When the input data
type is 'double' or
'fixed', the function
assumes that the
coefficient data type
is signed, 16-bit,
and autoscaled. The
function performs
fixed-point analysis
based on this
assumption.

Locked 'Custom' The function
performs fixed-point
analysis based on
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System Object
State

Coefficient Data
Type

Rule

the setting of the
CustomCoefficientsDataType
property.

When you do not specify the arithmetic for non-CIC structures, the
function uses double-precision arithmetic if the filter System object
is in an unlocked state. If the System object is locked, the function
performs analysis based on the locked input data type. CIC structures
only support fixed-point arithmetic.

Examples Create an allpass filter and verify that the frequency response is allpass.

b = [1/3 1/4 1/5 1];
a = fliplr(b);
flag = isallpass(b,a)
fvtool(b,a)

Create a lattice allpass filter and verify that the filter is allpass.

k = [1/2 1/3 1/4 1/5];
[b,a] = latc2tf(k,'allpass');
flag_isallpass = isallpass(b,a)
fvtool(b,a)

See Also islinphase | ismaxphase | isminphase | isstable
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Purpose Determine whether filter has linear phase

Syntax flag = islinphase(b,a)
flag = islinphase(sos)
flag = islinphase(h)
flag = islinphase(...,tol)
flag = islinphase(hs,...)
flag = islinphase(hs,'Arithmetic',arithtype)

Description flag = islinphase(b,a) returns a logical output, flag, equal to true
if the filter coefficients in b and a define a linear phase filter. flag is
equal to false if the filter does not have linear phase.

flag = islinphase(sos) returns true if the filter specified by second
order sections matrix, sos, is linear phase. sos is a K-by-6 matrix,
where the number of sections, K, must be greater than or equal to
2. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = islinphase(h) determines if the filter object h is linear phase.
islinphase accepts an adapfilt, dfilt, or mfilt object. To create
an adapfilt or mfilt object, you must have the DSP System Toolbox
software.

flag = islinphase(...,tol) uses the tolerance, tol, to determine
when two numbers are close enough to be considered equal. If not
specified, tol, defaults to eps^(2/3).

flag = islinphase(hs,...) determines whether the filter System
object hs is linear phase. You must have the DSP System Toolbox to use
islinphase with a System object.

flag = islinphase(hs,'Arithmetic',arithtype) analyzes the filter
System object hs based on the specified arithtype. arithtype can be
one of 'double', 'single', or 'fixed'. When you specify 'double' or
'single', the function performs double- or single-precision analysis.
When you specify 'fixed' , the arithmetic changes depending on the
setting of the CoefficientDataType property and whether the System
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object is locked or unlocked. You must have the DSP System Toolbox to
use islinphase with a System object.

Details for Fixed-Point Arithmetic

System Object
State

Coefficient Data
Type

Rule

Unlocked 'Same as input' The function assumes
that the coefficient
data type is signed, 16
bit, and autoscaled.
The function
performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.

Locked 'Same as input' When the input data
type is 'double' or
'fixed', the function
assumes that the
coefficient data type
is signed, 16-bit,
and autoscaled. The
function performs
fixed-point analysis
based on this
assumption.

Locked 'Custom' The function
performs fixed-point
analysis based on
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System Object
State

Coefficient Data
Type

Rule

the setting of the
CustomCoefficientsDataType
property.

When you do not specify the arithmetic for non-CIC structures, the
function uses double-precision arithmetic if the filter System object
is in an unlocked state. If the System object is locked, the function
performs analysis based on the locked input data type. CIC structures
only support fixed-point arithmetic.

Examples This FIR filter has linear phase.

d = fdesign.lowpass('n,fc',10,0.55);
h = design(d,'window');
flag = islinphase(h)

Using the specification nb,na,fp,fst results in an IIR filter that is not
linear phase in this design.

nb=15
na=10
d=fdesign.lowpass('nb,na,fp,fst',nb,na,0.45,0.55)
h=design(d);
flag = islinphase(h)

See Also isallpass | ismaxphase | isminphase | isstable
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Purpose Determine whether filter is minimum phase

Syntax flag = isminphase(b,a)
flag = isminphase(sos)
flag = isminphase(h)
flag = isminphase(...,tol)
flag = isminphase(hs,...)
isminphase(hs,'Arithmetic',arithtype)

Description flag = isminphase(b,a) returns a logical output, flag, equal to true
if the filter specified by numerator coefficients, b, and denominator
coefficients, a, is a minimum phase filter.

flag = isminphase(sos) returns true if the filter specified by second
order sections matrix, sos, is minimum phase. sos is a K-by-6 matrix,
where the number of sections, K, must be greater than or equal to
2. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = isminphase(h) determines if the dfilt filter object h is
minimum phase. If you have the DSP System Toolbox software,
isminphase works with adapfilt and mfilt objects.

flag = isminphase(...,tol) uses the tolerance, tol, to determine
when two numbers are close enough to be considered equal. If not
specified, tol, defaults to eps^(2/3).

A filter is minimum phase when all the zeros of its transfer function are
on or inside the unit circle, or the numerator is a scalar. An equivalent
definition for a minimum phase filter is a causal and stable system
with a causal and stable inverse.

flag = isminphase(hs,...) determines whether the filter System
object hs is minimum phase, returning 1 if true and 0 if false. You must
have the DSP System Toolbox software to use this syntax.

isminphase(hs,'Arithmetic',arithtype) analyzes the filter
System object hs based on the specified arithtype. arithtype can
be 'double', 'single', or 'fixed'. When you specify 'double' or
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'single', the function performs double- or single-precision analysis.
When you specify 'fixed' , the arithmetic changes depending on the
setting of the CoefficientDataType property and whether the System
object is locked or unlocked. You must have the DSP System Toolbox
software to use this syntax.

Details for Fixed-Point Arithmetic

System Object
State

Coefficient Data
Type

Rule

Unlocked 'Same as input' The function assumes
that the coefficient
data type is signed, 16
bit, and autoscaled.
The function
performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.
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System Object
State

Coefficient Data
Type

Rule

Locked 'Same as input' When the input data
type is 'double' or
'fixed', the function
assumes that the
coefficient data type
is signed, 16-bit,
and autoscaled. The
function performs
fixed-point analysis
based on this
assumption.

Locked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.

When you do not specify the arithmetic for non-CIC structures, the
function uses double-precision arithmetic if the filter System object
is in an unlocked state. If the System object is locked, the function
performs analysis based on the locked input data type. CIC structures
only support fixed-point arithmetic.

Examples Design a lowpass Butterworth IIR filter using second order sections and
check if the filter is minimum phase.

[z,p,k] = butter(6,0.15);
SOS = zp2sos(z,p,k);
min_flag = isminphase(SOS)

For a filter defined with a set of single precision numerator and
denominator coefficients, check if the filter is minimum phase for
different tolerances.
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b = single([1 1.00001]);
a = single([1 .45]);
min_flag1 = isminphase(b,a)
min_flag2 = isminphase(b,a,1e-3)

See Also isallpass | islinphase | ismaxphase | isstable
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Purpose Determine whether filter is maximum phase

Syntax flag = ismaxphase(b,a)
flag = ismaxphase(sos)
flag = ismaxphase(h)
flag = ismaxphase(...,tol)
flag = ismaxphase(hs,...)
flag = ismaxphase(hs,'Arithmetic',arithtype)

Description flag = ismaxphase(b,a) returns a logical output, flag, equal to true
if the filter specified by numerator coefficients, b, and denominator
coefficients, a, is a maximum phase filter.

flag = ismaxphase(sos) returns true if the filter specified by second
order sections matrix, sos, is a maximum phase filter. sos is a K-by-6
matrix, where the number of sections, K, must be greater than or equal
to 2. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = ismaxphase(h) returns true if the dfilt filter object h is a
maximum phase filter. If you have the DSP System Toolbox software,
ismaxphase works with adapfilt and mfilt objects.

flag = ismaxphase(...,tol) uses the tolerance, tol, to determine
when two numbers are close enough to be considered equal. If not
specified, tol, defaults to eps^(2/3).

flag = ismaxphase(hs,...) returns trueif the filter System object
hs is a maximum phase filter. You must have the DSP System Toolbox
software to use this syntax.

flag = ismaxphase(hs,'Arithmetic',arithtype) analyzes the filter
System object hs based on the specified arithtype. arithtype can
be 'double', 'single', or 'fixed'. When you specify 'double' or
'single', the function performs double- or single-precision analysis.
When you specify 'fixed' , the arithmetic changes depending on the
setting of the CoefficientDataType property and whether the System
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object is locked or unlocked. You must have the DSP System Toolbox
software to use this syntax.

Details for Fixed-Point Arithmetic

System Object
State

Coefficient Data
Type

Rule

Unlocked 'Same as input' The function assumes
that the coefficient
data type is signed, 16
bit, and autoscaled.
The function
performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.

Locked 'Same as input' When the input data
type is 'double' or
'fixed', the function
assumes that the
coefficient data type
is signed, 16-bit,
and autoscaled. The
function performs
fixed-point analysis
based on this
assumption.

Locked 'Custom' The function
performs fixed-point
analysis based on
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System Object
State

Coefficient Data
Type

Rule

the setting of the
CustomCoefficientsDataType
property.

When you do not specify the arithmetic for non-CIC structures, the
function uses double-precision arithmetic if the filter System object
is in an unlocked state. If the System object is locked, the function
performs analysis based on the locked input data type. CIC structures
only support fixed-point arithmetic.

Examples Design maximum-phase and minimum-phase lattice filters and verify
their phase type.

k = [1/6 1/1.4];
bmax = latc2tf(k,'max');
bmin = latc2tf(k,'min');
max_flag = ismaxphase(bmax)
min_flag = isminphase(bmin)

For a filter defined with a set of single precision numerator and
denominator coefficients, check if the filter is maximum phase for
different tolerances.

b = single([1 -0.9999]);
a = single([1 0.45]);
max_flag1 = ismaxphase(b,a)
max_flag2 = ismaxphase(b,a,1e-3)

See Also isallpass | islinphase | isminphase | isstable
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Purpose Determine whether filter is stable

Syntax flag = isstable(b,a)
flag = isstable(sos)
flag = isstable(h)
flag = isstable(hs)
flag = isstable(hs,'Arithmetic',arithtype)

Description flag = isstable(b,a) returns a logical output, flag, equal to true
if the filter specified by numerator coefficients, b, and denominator
coefficients, a, is a stable filter. If the poles lie on or outside the circle,
isstable returns false. If the poles are inside the circle, isstable
returns true.

flag = isstable(sos) returns true if the filter specified by second
order sections matrix, sos, is stable. sos is a K-by-6 matrix, where the
number of sections, K, must be greater than or equal to 2. Each row of
sos corresponds to the coefficients of a second order (biquad) filter. The
i-th row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1)
ai(2) ai(3)].

flag = isstable(h) returns true if the filter object, h, is stable. If you
have the DSP System Toolbox, you can use isstable with adaptfilt
and mfilt objects.

flag = isstable(hs) returns true if the filter System object hs is
stable. You must have the DSP System Toolbox software to use this
syntax.

flag = isstable(hs,'Arithmetic',arithtype) analyzes the filter
System object hs based on the specified arithtype. arithtype can
be 'double', 'single', or 'fixed'. When you specify 'double' or
'single', the function performs double- or single-precision analysis.
When you specify 'fixed' , the arithmetic changes depending on the
setting of the CoefficientDataType property and whether the System
object is locked or unlocked. You must have the DSP System Toolbox
software to use this syntax.
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Details for Fixed-Point Arithmetic

System Object
State

Coefficient Data
Type

Rule

Unlocked 'Same as input' The function assumes
that the coefficient
data type is signed, 16
bit, and autoscaled.
The function
performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.

Locked 'Same as input' When the input data
type is 'double' or
'fixed', the function
assumes that the
coefficient data type
is signed, 16-bit,
and autoscaled. The
function performs
fixed-point analysis
based on this
assumption.

Locked 'Custom' The function
performs fixed-point
analysis based on
the setting of the
CustomCoefficientsDataType
property.
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When you do not specify the arithmetic for non-CIC structures, the
function uses double-precision arithmetic if the filter System object
is in an unlocked state. If the System object is locked, the function
performs analysis based on the locked input data type. CIC structures
only support fixed-point arithmetic.

Examples Design a Butterworth highpass IIR filter using second order sections
and determine whether the filter is stable.

[z,p,k] = butter(6,0.7,'high');
SOS = zp2sos(z,p,k);
flag = isstable(SOS)
zplane(z,p)

Create a filter and determine the filter’s stability for different coefficient
data types and tolerances.

b = [1 -.5];
a = [1 -.999999999];
act_flag1 = isstable(b,a)
act_flag2 = isstable(single(b),single(a))
zplane(b,a)

See Also isallpass | islinphase | ismaxphase | isminphase | zplane
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Purpose Convert inverse sine parameters to reflection coefficients

Syntax k = is2rc(isin)

Description k = is2rc(isin) returns a vector of reflection coefficients k from a
vector of inverse sine parameters isin.

Examples isin = [0.2000 0.8727 0.0020 0.0052 -0.0052];
k = is2rc(isin);

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, Discrete-Time
Processing of Speech Signals, Prentice-Hall, 1993.

See Also ac2rc | lar2rc | poly2rc | rc2is
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Purpose Kaiser window

Syntax w = kaiser(L,beta)

Description w = kaiser(L,beta) returns an L-point Kaiser window in the column
vector w. beta is the Kaiser window parameter that affects the sidelobe
attenuation of the Fourier transform of the window. The default value
for beta is 0.5.

To obtain a Kaiser window that designs an FIR filter with sidelobe
attenuation of α dB, use the following β.
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Increasing beta widens the main lobe and decreases the amplitude of
the sidelobes (i.e., increases the attenuation).

Examples Create a 200-point Kaiser window with a beta of 2.5 and display the
result using WVTool:

w = kaiser(200,2.5);
wvtool(w)
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References [1] Kaiser, J.F., “Nonrecursive Digital Filter Design Using the I0- sinh
Window Function,” Proc. 1974 IEEE Symp. Circuits and Systems,
(April 1974), pp. 20-23.

[2] Selected Papers in Digital Signal Processing II, IEEE Press, New
York, 1975.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, p. 453.

See Also chebwin | gausswin | kaiserord | tukeywin | window | wintool |
wvtool
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Purpose Kaiser window FIR filter design estimation parameters

Syntax [n,Wn,beta,ftype] = kaiserord(f,a,dev)
[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs)
c = kaiserord(f,a,dev,fs,'cell')

Description kaiserord returns a filter order n and beta parameter to specify
a Kaiser window for use with the fir1 function. Given a set
of specifications in the frequency domain, kaiserord estimates
the minimum FIR filter order that will approximately meet the
specifications. kaiserord converts the given filter specifications into
passband and stopband ripples and converts cutoff frequencies into the
form needed for windowed FIR filter design.

[n,Wn,beta,ftype] = kaiserord(f,a,dev) finds the approximate
order n, normalized frequency band edges Wn, and weights that meet
input specifications f, a, and dev. f is a vector of band edges and a is a
vector specifying the desired amplitude on the bands defined by f. The
length of f is twice the length of a, minus 2. Together, f and a define
a desired piecewise constant response function. dev is a vector the
same size as a that specifies the maximum allowable error or deviation
between the frequency response of the output filter and its desired
amplitude, for each band. The entries in dev specify the passband
ripple and the stopband attenuation. You specify each entry in dev as a
positive number, representing absolute filter gain (not in decibels).

Note If, in the vector dev, you specify unequal deviations across bands,
the minimum specified deviation is used, since the Kaiser window
method is constrained to produce filters with minimum deviation in
all of the bands.

fir1 can use the resulting order n, frequency vector Wn, multiband
magnitude type ftype, and the Kaiser window parameter beta. The
ftype string is intended for use with fir1; it is equal to 'high' for a
highpass filter and 'stop' for a bandstop filter. For multiband filters,
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it can be equal to 'dc-0' when the first band is a stopband (starting at
f = 0) or 'dc-1' when the first band is a passband.

To design an FIR filter b that approximately meets the specifications
given by kaiser parameters f, a, and dev, use the following command.

b = fir1(n,Wn,kaiser(n+1,beta),ftype,'noscale')

[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs) uses a sampling
frequency fs in Hz. If you don’t specify the argument fs, or if you
specify it as the empty vector [], it defaults to 2 Hz, and the Nyquist
frequency is 1 Hz. You can use this syntax to specify band edges scaled
to a particular application’s sampling frequency. The frequency band
edges in f must be from 0 to fs/2.

c = kaiserord(f,a,dev,fs,'cell') is a cell-array whose elements
are the parameters to fir1.

Note In some cases, kaiserord underestimates or overestimates the
order n. If the filter does not meet the specifications, try a higher order
such as n+1, n+2, and so on, or a try lower order.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist
frequency, or if dev is large (greater than 10%).

Tips Be careful to distinguish between the meanings of filter length and
filter order. The filter length is the number of impulse response samples
in the FIR filter. Generally, the impulse response is indexed from
n = 0 to n = L–1 where L is the filter length. The filter order is the
highest power in a z-transform representation of the filter. For an FIR
transfer function, this representation is a polynomial in z, where the
highest power is zL–1 and the lowest power is z0. The filter order is one
less than the length (L–1) and is also equal to the number of zeros of
the z polynomial.
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Examples Example 1

Design a lowpass filter with passband defined from 0 to 1 kHz and
stopband defined from 1500 Hz to 4 kHz. Specify a passband ripple of
5% and a stopband attenuation of 40 dB:

fsamp = 8000;
fcuts = [1000 1500];
mags = [1 0];
devs = [0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
freqz(hh)

Example 2

Design an odd-length bandpass filter (note that odd length means even
order, so the input to fir1 must be an even integer):

fsamp = 8000;
fcuts = [1000 1300 2210 2410];
mags = [0 1 0];
devs = [0.01 0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
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n = n + rem(n,2);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
[H,f] = freqz(hh,1,1024,fsamp);
plot(f,abs(H)), grid on

Example 3

Design a lowpass filter with a passband cutoff of 1500 Hz, a stopband
cutoff of 2000 Hz, passband ripple of 0.01, stopband ripple of 0.1, and a
sampling frequency of 8000 Hz:

[n,Wn,beta,ftype] = kaiserord([1500 2000],[1 0],...
[0.01 0.1],8000);

b = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

This is equivalent to

c = kaiserord([1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = fir1(c{:});

Algorithms kaiserord uses empirically derived formulas for estimating the orders
of lowpass filters, as well as differentiators and Hilbert transformers.
Estimates for multiband filters (such as bandpass filters) are derived
from the lowpass design formulas.
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The design formulas that underlie the Kaiser window and its application
to FIR filter design are

β
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where α = –20log10δ is the stopband attenuation expressed in decibels
(recall that δp = δs is required).

The design formula is

n = −α
ω

7 95
2 285

.
. ( )Δ

where n is the filter order and Δω is the width of the smallest transition
region.

References [1] Kaiser, J.F., “Nonrecursive Digital Filter Design Using the - sinh
Window Function,” Proc. 1974 IEEE Symp. Circuits and Systems,
(April 1974), pp. 20-23.

[2] Selected Papers in Digital Signal Processing II, IEEE Press, New
York, 1975, pp. 123-126.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, pp. 458-562.

See Also fir1 | kaiser | firpmord
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Purpose Kaiser window filter from specification object

Syntax h = design(d,'kaiserwin')
h = design(d,'kaiserwin',designoption,value,designoption,...
value,...)

Description h = design(d,'kaiserwin') designs a digital filter hd, or a multirate
filter hm that uses a Kaiser window. For kaiserwin to work properly,
the filter order in the specifications object must be even. In addition,
higher order filters (filter order greater than 120) tend to be more
accurate for smaller transition widths. kaiserwin returns a warning
when your filter order may be too low to design your filter accurately.

h =
design(d,'kaiserwin',designoption,value,designoption,...
value,...) returns a filter where you specify design options as input
arguments and the design process uses the Kaiser window technique.

To determine the available design options, use designmethods with
the specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using kaiserwin, refer to the command line
help system. For example, to get specific information about using
kaiserwin with d, the specification object, enter the following at the
MATLAB prompt.

help(d,'kaiserwin')

Examples This example designs a direct form FIR filter from a lowpass filter
specification object.

d=fdesign.lowpass;
Hd=design(d,'kaiserwin');
fvtool(Hd)
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See Also design | fdesign
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Purpose Convert log area ratio parameters to reflection coefficients

Syntax k = lar2rc(g)

Description k = lar2rc(g) returns a vector of reflection coefficients k from a vector
of log area ratio parameters g.

Examples g = [0.6389 4.5989 0.0063 0.0163 -0.0163];
k = lar2rc(g);

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, Discrete-Time
Processing of Speech Signals, Prentice-Hall, 1993.

See Also ac2rc | is2rc | poly2rc | rc2lar
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Purpose Convert lattice filter parameters to transfer function form

Syntax [num,den] = latc2tf(k,v)
[num,den] = latc2tf(k,'iiroption')
num = latc2tf(k,'firoption')

Description [num,den] = latc2tf(k,v) finds the transfer function numerator num
and denominator den from the IIR lattice coefficients k and ladder
coefficients v.

[num,den] = latc2tf(k,'iiroption') produces an IIR filter transfer
function according to the value of the string 'iiroption':

• 'allpole': Produces an all-pole filter transfer function from the
associated all-pole IIR lattice filter coefficients k.

• 'allpass': Produces an allpass filter transfer function from the
associated allpass IIR lattice filter coefficients k.

num = latc2tf(k,'firoption') produces an FIR filter according to
the value of the string 'firoption':

• 'min': Produces a minimum-phase FIR filter numerator from the
associated minimum-phase FIR lattice filter coefficients k.

• 'max': Produces a maximum-phase FIR filter numerator from the
associated maximum-phase FIR lattice filter coefficients k.

• 'FIR': Produces a general FIR filter numerator from the lattice filter
coefficients k (default, if you leave off the string altogether).

See Also latcfilt | tf2latc
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Purpose Lattice and lattice-ladder filter implementation

Syntax [f,g] = latcfilt(k,x)
[f,g] = latcfilt(k,v,x)
[f,g] = latcfilt(k,1,x)
[f,g,zf] = latcfilt(...,'ic',zi)
[f,g,zf] = latcfilt(...,dim)

Description When filtering data, lattice coefficients can be used to represent

• FIR filters

• All-pole IIR filters

• Allpass IIR filters

• General IIR filters

[f,g] = latcfilt(k,x) filters x with the FIR lattice coefficients in the
vector k. The forward lattice filter result is f and g is the backward

filter result. If k ≤ 1 , f corresponds to the minimum-phase output, and
g corresponds to the maximum-phase output.

If k and x are vectors, the result is a (signal) vector. Matrix arguments
are permitted under the following rules:

• If x is a matrix and k is a vector, each column of x is processed
through the lattice filter specified by k.

• If x is a vector and k is a matrix, each column of k is used to filter x,
and a signal matrix is returned.

• If x and k are both matrices with the same number of columns, then
the ith column of k is used to filter the ith column of x. A signal
matrix is returned.

[f,g] = latcfilt(k,v,x) filters x with the IIR lattice coefficients k
and ladder coefficients v. Both k and v must be vectors, while x can
be a signal matrix.
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[f,g] = latcfilt(k,1,x) filters x with the IIR lattice specified by k,
where k and x can be vectors or matrices. f is the all-pole lattice filter
result and g is the allpass filter result.

[f,g,zf] = latcfilt(...,'ic',zi) accepts a length-k vector zi
specifying the initial condition of the lattice states. Output zf is a
length-k vector specifying the final condition of the lattice states.

[f,g,zf] = latcfilt(...,dim) filters x along the dimension dim. To
specify a dim value, the FIR lattice coefficients k must be a vector and
you must specify all previous input parameters in order. Use the empty
vector [ ] for any parameters you do not want to specify. zf returns the
final conditions in columns, regardless of the shape of x.

Examples Filter data with an FIR lattice filter:

%create data
x=randn(512,1);
%reflection coefficients for 3-point MA filter
[f,g]=latcfilt([1/2 1],x);
%compare f vector to dfilt.latticemamin output
Hd=dfilt.latticemamin([1/2 1]);
y=filter(Hd,x);
isequal(y,f) %returns 1
%compare g vector to dfilt.latticemamax output
Hd1=dfilt.latticemamax([1/2 1]);
y1=filter(Hd1,x);
isequal(g,y1) %returns 1

See Also dfilt.latticemamax | dfilt.latticemamin | filter
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Purpose Levinson-Durbin recursion

Syntax a = levinson(r)
a = levinson(r,n)
[a,e] = levinson(r,n)
[a,e,k] = levinson(r,n)

Description The Levinson-Durbin recursion is an algorithm for finding an all-pole
IIR filter with a prescribed deterministic autocorrelation sequence. It
has applications in filter design, coding, and spectral estimation. The
filter that levinson produces is minimum phase.

a = levinson(r) finds the coefficients of a length(r)-1 order
autoregressive linear process which has r as its autocorrelation
sequence. r is a real or complex deterministic autocorrelation sequence.
If r is a matrix, levinson finds the coefficients for each column of r and
returns them in the rows of a. n=length(r)-1 is the default order of the
denominator polynomial A(z); that is, a = [1 a(2) ... a(n+1)]. The
filter coefficients are ordered in descending powers of z–1.

H z
A z a z a n z n

( )
( ) ( ) ( )

= =
+ + + +− −

1 1

1 2 11 

a = levinson(r,n) returns the coefficients for an autoregressive
model of order n.

[a,e] = levinson(r,n) returns the prediction error, e, of order n.

[a,e,k] = levinson(r,n) returns the reflection coefficients k as a
column vector of length n.

Note k is computed internally while computing the a coefficients, so
returning k simultaneously is more efficient than converting a to k
with tf2latc.
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Algorithms levinson solves the symmetric Toeplitz system of linear equations
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where r = [r(1) ... r(n+1)] is the input autocorrelation vector, and r(i)*

denotes the complex conjugate of r(i). The input r is typically a vector of
autocorrelation coefficients where lag 0 is the first element r(1). The
algorithm requires O(n2) flops and is thus much more efficient than the
MATLAB \ command for large n. However, the levinson function uses
\ for low orders to provide the fastest possible execution.

References [1] Ljung, L., System Identification: Theory for the User, Prentice-Hall,
1987, pp. 278-280.

See Also lpc | prony | rlevinson | schurrc | stmcb
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Purpose Transform lowpass analog filters to bandpass

Syntax [bt,at] = lp2bp(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Description lp2bp transforms analog lowpass filter prototypes with a cutoff angular
frequency of 1 rad/s into bandpass filters with desired bandwidth and
center frequency. The transformation is one step in the digital filter
design process for the butter, cheby1, cheby2, and ellip functions.

lp2bp can perform the transformation on two different linear system
representations: transfer function form and state-space form. In both
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter
prototype given by polynomial coefficients into a bandpass filter with
center frequency Wo and bandwidth Bw. Row vectors b and a specify
the coefficients of the numerator and denominator of the prototype in
descending powers of s.

B s
A s

b s b n s b n

a s a m s a m

n

m
( )
( )

( ) ( ) ( )

( ) ( ) ( )
= + + + +

+ + + +
1 1

1 1





Scalars Wo and Bw specify the center frequency and bandwidth in units
of rad/s. For a filter with lower band edge w1 and upper band edge w2,
use Wo = sqrt(w1*w2) and Bw = w2-w1.

lp2bp returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw) converts the
continuous-time state-space lowpass filter prototype in matrices A, B, C,
D shown below

x Ax Bu
y Cx Du
= +
= +
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into a bandpass filter with center frequency Wo and bandwidth Bw.
For a filter with lower band edge w1 and upper band edge w2, use
Wo = sqrt(w1*w2) and Bw = w2-w1.

The bandpass filter is returned in matrices At, Bt, Ct, Dt.

Algorithms lp2bp is a highly accurate state-space formulation of the classic analog
filter frequency transformation. Consider the state-space system

x Ax Bu
y Cx Du
= +
= +

where u is the input, x is the state vector, and y is the output.
The Laplace transform of the first equation (assuming zero initial
conditions) is

sX s AX s BU s( ) ( ) ( )= +

Now if a bandpass filter is to have center frequency ω0 and bandwidth
Bw, the standard s-domain transformation is

s Q p p= +( ) /2 1

where Q = ω0/Bw and p = s/ω0. Substituting this for s in the Laplace
transformed state-space equation, and considering the operator p as
d/dt results in

Qx Qx Ax Bu  + = +

or

Qx Ax Bu Qx  − − = −

Now define

Q Qxω = −

which, when substituted, leads to
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Qx Ax Q Bu = + +ω

The last two equations give equations of state. Write them in standard
form and multiply the differential equations by ω0 to recover the
time/frequency scaling represented by p and find state matrices for
the bandpass filter:

Q = Wo/Bw; [ma,m] = size(A);
At = Wo*[A/Q eye(ma,m);-eye(ma,m) zeros(ma,m)];
Bt = Wo*[B/Q; zeros(ma,n)];
Ct = [C zeros(mc,ma)];
Dt = d;

If the input to lp2bp is in transfer function form, the function
transforms it into state-space form before applying this algorithm.

See Also bilinear | impinvar | lp2bs | lp2hp | lp2lp
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Purpose Transform lowpass analog filters to bandstop

Syntax [bt,at] = lp2bs(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

Description lp2bs transforms analog lowpass filter prototypes with a cutoff angular
frequency of 1 rad/s into bandstop filters with desired bandwidth and
center frequency. The transformation is one step in the digital filter
design process for the butter, cheby1, cheby2, and ellip functions.

lp2bs can perform the transformation on two different linear system
representations: transfer function form and state-space form. In both
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bs(b,a,Wo,Bw) transforms an analog lowpass filter
prototype given by polynomial coefficients into a bandstop filter with
center frequency Wo and bandwidth Bw. Row vectors b and a specify
the coefficients of the numerator and denominator of the prototype in
descending powers of s.

B s
A s

b s b n s b n

a s a m s a m

n

m
( )
( )

( ) ( ) ( )

( ) ( ) ( )
= + + + +

+ + + +
1 1

1 1





Scalars Wo and Bw specify the center frequency and bandwidth in units
of radians/second. For a filter with lower band edge w1 and upper band
edge w2, use Wo = sqrt(w1*w2) and Bw = w2-w1.

lp2bs returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw) converts the
continuous-time state-space lowpass filter prototype in matrices A, B, C,
D shown below

x Ax Bu
y Cx Du
= +
= +

1-689



lp2bs

into a bandstop filter with center frequency Wo and bandwidth Bw.
For a filter with lower band edge w1 and upper band edge w2, use
Wo = sqrt(w1*w2) and Bw = w2-w1.

The bandstop filter is returned in matrices At, Bt, Ct, Dt.

Algorithms lp2bs is a highly accurate state-space formulation of the classic analog
filter frequency transformation. If a bandstop filter is to have center
frequency ω0 and bandwidth Bw, the standard s-domain transformation
is

s
p

Q p
=

+( )2 1

where Q = ω0/Bw and p = s/ω0. The state-space version of this
transformation is

Q = Wo/Bw;
At = [Wo/Q*inv(A) Wo*eye(ma);-Wo*eye(ma) zeros(ma)];
Bt = -[Wo/Q*(A\B); zeros(ma,n)];
Ct = [C/A zeros(mc,ma)];
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this
transformation.

See Also bilinear | impinvar | lp2bp | lp2hp | lp2lp
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Purpose Transform lowpass analog filters to highpass

Syntax [bt,at] = lp2hp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Description lp2hp transforms analog lowpass filter prototypes with a cutoff angular
frequency of 1 rad/s into highpass filters with desired cutoff angular
frequency. The transformation is one step in the digital filter design
process for the butter, cheby1, cheby2, and ellip functions.

The lp2hp function can perform the transformation on two different
linear system representations: transfer function form and state-space
form. In both cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2hp(b,a,Wo) transforms an analog lowpass filter
prototype given by polynomial coefficients into a highpass filter with
cutoff angular frequency Wo. Row vectors b and a specify the coefficients
of the numerator and denominator of the prototype in descending
powers of s.

B s
A s

b s b n s b n

a s a m s a m

n

m
( )
( )

( ) ( ) ( )

( ) ( ) ( )
= + + + +

+ + + +
1 1

1 1





Scalar Wo specifies the cutoff angular frequency in units of
radians/second. The frequency transformed filter is returned in row
vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo) converts the continuous-time
state-space lowpass filter prototype in matrices A, B, C, D below

x Ax Bu
y Cx Du
= +
= +

into a highpass filter with cutoff angular frequency Wo. The highpass
filter is returned in matrices At, Bt, Ct, Dt.
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Algorithms lp2hp is a highly accurate state-space formulation of the classic analog
filter frequency transformation. If a highpass filter is to have cutoff
angular frequency ω0, the standard s-domain transformation is

s
p

=
ω0

The state-space version of this transformation is

At = Wo*inv(A);
Bt = -Wo*(A\B);
Ct = C/A;
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this
transformation.

See Also bilinear | impinvar | lp2bp | lp2bs | lp2lp
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Purpose Change cutoff frequency for lowpass analog filter

Syntax [bt,at] = lp2lp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Description lp2lp transforms an analog lowpass filter prototype with a cutoff
angular frequency of 1 rad/s into a lowpass filter with any specified
cutoff angular frequency. The transformation is one step in the digital
filter design process for the butter, cheby1, cheby2, and ellip
functions.

The lp2lp function can perform the transformation on two different
linear system representations: transfer function form and state-space
form. In both cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2lp(b,a,Wo) transforms an analog lowpass filter
prototype given by polynomial coefficients into a lowpass filter with
cutoff angular frequency Wo. Row vectors b and a specify the coefficients
of the numerator and denominator of the prototype in descending
powers of s.

B s
A s

b s b n s b n

a s a m s a m

n

m
( )
( )

( ) ( ) ( )

( ) ( ) ( )
= + + + +

+ + + +
1 1

1 1





Scalar Wo specifies the cutoff angular frequency in units of
radians/second. lp2lp returns the frequency transformed filter in row
vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo) converts the continuous-time
state-space lowpass filter prototype in matrices A, B, C, D below

x Ax Bu
y Cx Du
= +
= +
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into a lowpass filter with cutoff angular frequency Wo. lp2lp returns
the lowpass filter in matrices At, Bt, Ct, Dt.

Algorithms lp2lp is a highly accurate state-space formulation of the classic analog
filter frequency transformation. If a lowpass filter is to have cutoff
angular frequency ω0, the standard s-domain transformation is

s p= / ω0

The state-space version of this transformation is

At = Wo*A;
Bt = Wo*B;
Ct = C;
Dt = D;

See lp2bp for a derivation of the bandpass version of this
transformation.

See Also bilinear | impinvar | lp2bp | lp2bs | lp2hp
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Purpose Linear prediction filter coefficients

Syntax [a,g] = lpc(x,p)

Description lpc determines the coefficients of a forward linear predictor by
minimizing the prediction error in the least squares sense. It has
applications in filter design and speech coding.

[a,g] = lpc(x,p) finds the coefficients of a pth-order linear predictor
(FIR filter) that predicts the current value of the real-valued time series
x based on past samples.

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )x n a x n a x n a p x n p= − − − − − − + −2 1 3 2 1

p is the order of the prediction filter polynomial, a = [1
a(2) ... a(p+1)]. If p is unspecified, lpc uses as a default
p = length(x)-1. If x is a matrix containing a separate signal in each
column, lpc returns a model estimate for each column in the rows of
matrix a and a column vector of prediction error variances g. The length
of p must be less than or equal to the length of x.

Examples Estimate a data series using a third-order forward predictor, and
compare to the original signal.

First, create the signal data as the output of an autoregressive process
driven by white noise. Use the last 4096 samples of the AR process
output to avoid start-up transients:

noise = randn(50000,1); % Normalized white Gaussian noise
x = filter(1,[1 1/2 1/3 1/4],noise);
x = x(45904:50000);

Compute the predictor coefficients, estimated signal, prediction error,
and autocorrelation sequence of the prediction error:

a = lpc(x,3);
est_x = filter([0 -a(2:end)],1,x); % Estimated signal
e = x - est_x; % Prediction error
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[acs,lags] = xcorr(e,'coeff'); % ACS of prediction error

The prediction error, e(n), can be viewed as the output of the prediction
error filter A(z) shown below, where H(z) is the optimal linear predictor,

x(n) is the input signal, and ˆ( )x n is the predicted signal.

Compare the predicted signal to the original signal.

plot(1:97,x(4001:4097),1:97,est_x(4001:4097),'--');
title('Original Signal vs. LPC Estimate');
xlabel('Sample Number'); ylabel('Amplitude'); grid;
legend('Original Signal','LPC Estimate')

Look at the autocorrelation of the prediction error:

plot(lags,acs);
title('Autocorrelation of the Prediction Error');
xlabel('Lags'); ylabel('Normalized Value'); grid;

The prediction error is approximately white Gaussian noise, as expected
for a third-order AR input process.

Algorithms lpc uses the autocorrelation method of autoregressive (AR) modeling
to find the filter coefficients. The generated filter might not model the
process exactly even if the data sequence is truly an AR process of the
correct order. This is because the autocorrelation method implicitly
windows the data, that is, it assumes that signal samples beyond the
length of x are 0.
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lpc computes the least squares solution to

Xa b=

where
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and m is the length of x. Solving the least squares problem via the
normal equations

X Xa X bH H=

leads to the Yule-Walker equations
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where r = [r(1) r(2) ... r(p+1)] is an autocorrelation estimate for x
computed using xcorr. The Yule-Walker equations are solved in O(p2)
flops by the Levinson-Durbin algorithm (see levinson).

References [1] Jackson, L.B., Digital Filters and Signal Processing, Second Edition,
Kluwer Academic Publishers, 1989. pp. 255-257.

See Also aryule | levinson | prony | pyulear | stmcb
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Purpose Convert line spectral frequencies to prediction filter coefficients

Syntax a = lsf2poly(lsf)

Description a = lsf2poly(lsf) returns a vector a containing the prediction filter
coefficients from the vector lsf of line spectral frequencies. If lsf is a
matrix of size MxN with separate channels of line spectral frequencies
in each column, the returned a matrix has the resulting prediction filter
coefficients in rows and is of size Nx(M+1).

Examples lsf = [0.7842 1.5605 1.8776 1.8984 2.3593];
a = lsf2poly(lsf)
a =

1.0000 0.6148 0.9899 0.0001 0.0031 -0.0081

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, Discrete-Time
Processing of Speech Signals, Prentice-Hall, 1993.

[2] Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, 1978.

See Also ac2poly | poly2lsf | rc2poly
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Purpose Convert magnitude to decibels (dB)

Syntax ydb = mag2db(y)

Description ydb = mag2db(y) returns the corresponding decibel (dB) value ydb for
a given magnitude y. The relationship between magnitude and decibels
is ydb = 20*log10(y).

See Also db2mag
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Purpose Generalized Marcum Q function

Syntax Q = marcumq(a,b)
Q = marcumq(a,b,m)

Description Q = marcumq(a,b) computes the Marcum Q function of a and b, defined
by

Q a b x
x a

I ax dx
b

( , ) exp
( )

( )= − +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∞

∫
2 2

02

where a and b are nonnegative real numbers. In this expression, I0 is
the modified Bessel function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

Q a b
a

x
x a

I ax dx
m

m

b
m( , ) exp

( )
( )= − +⎛

⎝
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⎞

⎠
⎟⎟−

∞

−∫1
21

2 2

1

where a and b are nonnegative real numbers, and m is a positive integer.
In this expression, Im-1 is the modified Bessel function of the first kind
of order m-1.

If any of the inputs is a scalar, it is expanded to the size of the other
inputs.

Algorithms marcumq uses the algorithm developed in [3]. The paper describes two
error criteria: a relative error criterion and an absolute error criterion.
marcumq utilizes the absolute error criterion.

References [1] Cantrell, P. E., and A. K. Ojha, “Comparison of Generalized
Q-Function Algorithms,” IEEE Transactions on Information Theory,
Vol. IT-33, July, 1987, pp. 591–596.
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[2] Marcum, J. I., “A Statistical Theory of Target Detection by Pulsed
Radar: Mathematical Appendix,” RAND Corporation, Santa Monica,
CA, Research Memorandum RM-753, July 1, 1948. Reprinted in IRE
Transactions on Information Theory, Vol. IT-6, April, 1960, pp. 59–267.

[3] Shnidman, D. A., “The Calculation of the Probability of Detection
and the Generalized Marcum Q-Function,” IEEE Transactions on
Information Theory, Vol. IT-35, March, 1989, pp. 389–400.

See Also besseli
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Purpose Generalized digital Butterworth filter design

Syntax [b,a] = maxflat(n,m,Wn)
b = maxflat(n,'sym',Wn)
[b,a,b1,b2] = maxflat(n,m,Wn)
[b,a,b1,b2,sos,g] = maxflat(n,m,Wn)
[...] = maxflat(n,m,Wn,'design_flag')

Description [b,a] = maxflat(n,m,Wn) is a lowpass Butterworth filter with
numerator and denominator coefficients b and a of orders n and
m respectively. Wn is the normalized cutoff frequency at which the

magnitude response of the filter is equal to 1 2/ (approx. -3 dB). Wn
must be between 0 and 1, where 1 corresponds to the Nyquist frequency.

b = maxflat(n,'sym',Wn) is a symmetric FIR Butterworth filter. n
must be even, and Wn is restricted to a subinterval of [0,1]. The function
raises an error if Wn is specified outside of this subinterval.

[b,a,b1,b2] = maxflat(n,m,Wn) returns two polynomials b1 and
b2 whose product is equal to the numerator polynomial b (that is,
b = conv(b1,b2)). b1 contains all the zeros at z = -1, and b2 contains
all the other zeros.

[b,a,b1,b2,sos,g] = maxflat(n,m,Wn) returns the second-order
sections representation of the filter as the filter matrix sos and the
gain g.

[...] = maxflat(n,m,Wn,'design_flag') enables you to monitor the
filter design, where 'design_flag' is

• 'trace' for a textual display of the design table used in the design

• 'plots' for plots of the filter’s magnitude, group delay, and zeros
and poles

• 'both' for both the textual display and plots

Examples n = 10; m = 2; Wn = 0.2;
[b,a] = maxflat(n,m,Wn)
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fvtool(b,a) % Display the magnitude plot

Algorithms The method consists of the use of formulae, polynomial root finding, and
a transformation of polynomial roots.

References [1] Selesnick, I.W., and C.S. Burrus, “Generalized Digital Butterworth
Filter Design,” Proceedings of the IEEE Int. Conf. Acoust., Speech,
Signal Processing, Vol. 3 (May 1996).
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See Also butter | filter | freqz
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Purpose 1-D median filtering

Syntax y = medfilt1(x,n)
y = medfilt1(x,n,blksz)
y = medfilt1(x,n,blksz,dim)

Description y = medfilt1(x,n) applies an order n one-dimensional median filter to
vector x; the function considers the signal to be 0 beyond the end points.
Output y has the same length as x.

For n odd, y(k) is the median of x(k-(n-1)/2:k+(n-1)/2).

For n even, y(k) is the median of x(k-n/2), x(k-(n/2)+1), ...,
x(k+(n/2)-1). In this case, medfilt1 sorts the numbers, then takes
the average of the n/2 and (n/2)+1 elements.

The default for n is 3.

y = medfilt1(x,n,blksz) uses a for-loop to compute blksz (block
size) output samples at a time. Use blksz << length(x) if you are low
on memory, since medfilt1 uses a working matrix of size n-by-blksz.
By default, blksz = length(x); this provides the fastest execution if
you have sufficient memory.

If x is a matrix, medfilt1 median filters its columns using

y(:,i) = medfilt1(x(:,i),n,blksz)

in a loop over the columns of x.

y = medfilt1(x,n,blksz,dim) specifies the dimension, dim, along
which the filter operates.

References [1] Pratt, W.K., Digital Image Processing, John Wiley & Sons, 1978,
pp. 330-333.

See Also filter | medfilt2 | median
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Purpose Mid-reference level crossing for bilevel waveform

Syntax C = midcross(X)
C = midcross(X,FS)
C = midcross(X,T)
[C,MIDLEV] = midcross(...)
C = midcross(X,Name,Value)
midcross(...)

Description C = midcross(X) returns a vector, C, of time instants where each
transition of the input signal, X, crosses the 50% reference level. The
sample instants correspond to the indices of the input vector. Because
midcross uses interpolation to determine the crossing instant, C
may contain values that do not correspond to sampling instants. To
determine the transitions, midcross estimates the state levels of X by
a histogram method. midcross identifies all intervals which cross the
upper-state boundary of the low state and the lower-state boundary of
the high state. The low-state and high-state boundaries are expressed
as the state level plus or minus a multiple of the difference between the
state levels. See “State-Level Tolerances” on page 1-708.

C = midcross(X,FS) specifies the sample rate, FS, in hertz as a
positive scalar. The first sample instant corresponds to t=0. Because
midcross uses interpolation to determine the crossing instant, C may
contain values that do not correspond to sampling instants.

C = midcross(X,T) specifies the sample instants, T, as a vector with
the same number of elements as X. Because midcross uses interpolation
to determine the crossing instant, C may contain values that do not
correspond to sampling instants.

[C,MIDLEV] = midcross(...) returns the waveform value
corresponding to the mid-reference level.

C = midcross(X,Name,Value) returns the time instants corresponding
to mid-reference level crossings with additional options specified by one
or more Name,Value pair arguments.
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midcross(...) plots the signal and marks the location of the
mid-crossings (mid-reference level instants) and the associated
reference levels. midcross also plots the state levels with upper and
lower state boundaries.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MidPct’

Mid-reference level as a percentage of the waveform amplitude.

Default: 50

’StateLevels’

Low and high state levels. StateLevels is a 1-by-2 real-valued vector.
The first element is the low state level. The second element is the high
state level. If you do not specify low- and high-state levels, midcross
estimates the state levels from the input waveform using the histogram
method.
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’Tolerance’

Tolerance levels (lower- and upper-state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-708.

Default: 2

Output
Arguments

C

Time instants of the mid-reference level crossings.

MIDLEV

Mid-reference level.

Definitions Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S_1,
and high–state level, S_2, is

S S S1 2 1
1
2

 ( )

Mid Reference Level Instant

Let y50% denote the mid–reference level.

Let t50%-
and t50%+

denote the two consecutive sampling instants
corresponding to the waveform values nearest in value to y50%.

Let y50%-
and y50%+

denote the waveform values at t50%-
and t50%+

.

The mid-reference level instant is

t t
t t

y y
y y50 50

50 50

50 50
50 50% %

% %

% %
% %( )( ) 




 

 

 

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
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scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Mid-Reference Level Instant of Bilevel Waveform

Assuming a sampling interval of 1, compute the mid-reference level
instant of a bilevel waveform and plot the result.
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load('transitionex.mat', 'x');
C = midcross(x);
plot(x); hold on;
plot([C C],[-0.5 2.5],'r','linewidth',2);

The instant at which the waveform crosses the 50% reference level is
21.5. Note that this is not a sampling instant present in the input vector
because midcross uses interpolation to identify the mid-reference level
crossing.
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Mid-Reference Level Instant with Sampling Frequency

Compute the mid-reference level instant using the sampling rate for a
bilevel waveform sampled at 4 MHz.

load('transitionex.mat','x','t');
Fs = 1/(t(2)-t(1));
C = midcross(x,Fs);

Mid Reference Level Instant Using Sample Instants

Compute the mid-reference level instants using a vector of sample times
equal in length to the bilevel waveform. The sampling rate is 4 MHz.

load('transitionex.mat','x','t');
C = midcross(x,t);

Mid-Reference Level Value of Bilevel Waveform

Compute the level corresponding to the mid-reference level instant.
Plot the result.

load('transitionex.mat','x','t');
[C,MIDLEV] = midcross(x,t);
plot(t,x); hold on;
plot([C C],[-0.5 2.5],'r','linewidth',2);
plot([0 t(end)],[MIDLEV MIDLEV],'r','linewidth',2);
axis tight;
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60% Reference Level Instant and Waveform Value

Obtain the 60% reference level instant and value for a bilevel waveform.

load('transitionex.mat','x','t');
[C,Lev60] = midcross(x,t,'MidPct',60);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003. p. 20.
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See Also falltime | pulsewidth | risetime | settlingtime |
statelevels
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Purpose Modulation for communications simulation

Syntax y = modulate(x,fc,fs,'method')
y = modulate(x,fc,fs,'method',opt)
[y,t] = modulate(x,fc,fs)

Description y = modulate(x,fc,fs,'method') and

y = modulate(x,fc,fs,'method',opt) modulate the real message
signal x with a carrier frequency fc and sampling frequency fs, using
one of the options listed below for 'method'. Note that some methods
accept an option, opt.

Note Use modulate and demod in the Signal Processing Toolbox
with real-valued signals to obtain real-valued outputs. modulate and
demod are not intended to accept complex-valued inputs or produce
complex-valued outputs.

Method Description

amdsb-sc

or

am

Amplitude modulation, double sideband, suppressed
carrier. Multiplies x by a sinusoid of frequency fc.

y = x.*cos(2*pi*fc*t)

amdsb-tc Amplitude modulation, double sideband, transmitted
carrier. Subtracts scalar opt from x and multiplies
the result by a sinusoid of frequency fc.

y = (x-opt).*cos(2*pi*fc*t)

If the opt parameter is not present, modulate uses a
default of min(min(x)) so that the message signal
(x-opt) is entirely nonnegative and has a minimum
value of 0.

1-715



modulate

Method Description

amssb Amplitude modulation, single sideband. Multiplies
x by a sinusoid of frequency fc and adds the result
to the Hilbert transform of x multiplied by a phase
shifted sinusoid of frequency fc.

y =

x.*cos(2*pi*fc*t)+imag(hilbert(x)).*sin(2*pi*fc*t)

This effectively removes the upper sideband.

fm Frequency modulation. Creates a sinusoid with
instantaneous frequency that varies with the message
signal x.

y = cos(2*pi*fc*t + opt*cumsum(x))

cumsum is a rectangular approximation to the integral
of x. modulate uses opt as the constant of frequency
modulation. If opt is not present, modulate uses a
default of

opt = (fc/fs)*2*pi/(max(max(x)))

so the maximum frequency excursion from fc is
fc Hz.

pm Phase modulation. Creates a sinusoid of frequency
fc whose phase varies with the message signal x.

y = cos(2*pi*fc*t + opt*x)

modulate uses opt as the constant of phase
modulation. If opt is not present, modulate uses a
default of

opt = pi/(max(max(x)))

so the maximum phase excursion is π radians.
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Method Description

pwm Pulse-width modulation. Creates a pulse-width
modulated signal from the pulse widths in x. The
elements of x must be between 0 and 1, specifying
the width of each pulse in fractions of a period. The
pulses start at the beginning of each period, that is,
they are left justified.

modulate(x,fc,fs,'pwm','centered')

yields pulses centered at the beginning of each period.
y is length length(x)*fs/fc.

ppm Pulse-position modulation. Creates a pulse-position
modulated signal from the pulse positions in x. The
elements of x must be between 0 and 1, specifying the
left edge of each pulse in fractions of a period. opt is
a scalar between 0 and 1 that specifies the length of
each pulse in fractions of a period. The default for opt
is 0.1. y is length length(x)*fs/fc.

qam Quadrature amplitude modulation. Creates a
quadrature amplitude modulated signal from signals
x and opt.

y = x.*cos(2*pi*fc*t) + opt.*sin(2*pi*fc*t)

opt must be the same size as x.

If you do not specify 'method', then modulate assumes am. Except for
the pwm and ptm cases, y is the same size as x.

If x is an array, modulate modulates its columns.

[y,t] = modulate(x,fc,fs) returns the internal time vector t that
modulate uses in its computations.

See Also demod | vco
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Purpose Magnitude squared coherence

Syntax Cxy = mscohere(x,y)
Cxy = mscohere(x,y,window)
Cxy = mscohere(x,y,window,noverlap)
[Cxy,W] = mscohere(x,y,window,noverlap,nfft)
[Cxy,F] = mscohere(x,y,window,noverlap,nfft,fs)
[...] = mscohere(x,y,...,'twosided')
mscohere(...)

Description Cxy = mscohere(x,y) finds the magnitude squared coherence estimate
Cxy of the input signals x and y using Welch’s averaged, modified
periodogram method. The magnitude squared coherence estimate is a
function of frequency with values between 0 and 1 that indicates how
well x corresponds to y at each frequency. The magnitude squared
coherence is a function of the power spectral densities (Pxx(f) and Pyy(f))
of x and y and the cross power spectral density (Pxy(f)) of x and y.

C f
P f

P f P fxy
xy

xx yy
( )

| ( )|

( ) ( )
=

2

x and y must be the same length. For real x and y, mscohere returns
a one-sided coherence estimate and for complex x or y, it returns a
two-sided estimate.

mscohere uses the following default values:
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Parameter Description Default Value

nfft FFT length which
determines the
frequencies at which
the coherence is estimated

For real x and y, the
length of Cxy is (nfft/2+1)
if nfft is even or
(nfft+1)/2 if nfft is
odd. For complex x or y,
the length of Cxy is nfft.

If nfft is greater than the
signal length, the data
is zero-padded. If nfft
is less than the signal
length, the segment is
wrapped using datawrap
so that the length is equal
to nfft.

Maximum of 256 or the
next power of 2 greater
than the length of each
section of x or y

fs Sampling frequency 1

window Windowing function and
number of samples to use
for each section

Periodic Hamming
window of length to obtain
eight equal sections of x
and y

noverlap Number of samples by
which the sections overlap

Value to obtain 50%
overlap

Note You can use the empty matrix [] to specify the default
value for any input argument except x or y. For example, Pxy =
mschoere(x,y,[],[],128) uses a Hamming window, default noverlap
to obtain 50% overlap, and the specified 128 nfft.
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Cxy = mscohere(x,y,window) specifies a windowing function, divides
x and y into equal overlapping sections of the specified window length,
and windows each section using the specified window function. If you
supply a scalar for window, Cxy uses a Hamming window of that length.
mscohere zero pads the sections if the window length exceeds nfft.

Cxy = mscohere(x,y,window,noverlap) overlaps the sections of x
by noverlap samples. noverlap must be an integer smaller than the
length of window.

[Cxy,W] = mscohere(x,y,window,noverlap,nfft) uses the specified
FFT length nfft to calculate the coherence estimate. It also returns W,
which is the vector of normalized frequencies (in rad/sample) at which
the coherence is estimated. For real x and y, Cxy length is (nfft/2 +1) if
nfft is even and if nfft is odd, the length is (nfft+1)/2. For complex x
or y, the length of Cxy is nfft. For real signals, the range of W is [0, pi]
when nfft is even and [0, pi) when nfft is odd. For complex signals,
the range of W is [0, 2*pi).

[Cxy,F] = mscohere(x,y,window,noverlap,nfft,fs) returns Cxy
as a function of frequency and a vector F of frequencies at which the
coherence is estimated. fs is the sampling frequency in Hz. For real
signals, the range of F is [0, fs/2] when nfft is even and [0, fs/2) when
nfft is odd. For complex signals, the range of F is [0, fs).

[...] = mscohere(x,y,...,'twosided') returns a coherence estimate
with frequencies that range over the whole Nyquist interval. Specifying
'onesided' uses half the Nyquist interval.

mscohere(...) plots the magnitude squared coherence versus
frequency in the current figure window.

Note If you estimate the magnitude squared coherence with a single
window, or section, the value is identically 1 for all frequencies [1] .
You must use at least two sections.
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Examples Compute and plot the coherence estimate between two colored noise
sequences x and y:

rng default;
h = fir1(30,0.2,rectwin(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
mscohere(x,y,hanning(1024),512,1024)
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Algorithms mscohere estimates the magnitude squared coherence function [2]
using Welch’s overlapped averaged periodogram method (see references
[3] and [4]).

References [1] Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper
Saddle River, NJ: Prentice-Hall, 2005. pp. 67-68.

[2] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988. pp. 453-455.

[3] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[4] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation
of Power Spectra: A Method Based on Time Averaging Over Short,
Modified Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15
(June 1967), pp. 70-73.

See Also cpsd | periodogram | pwelch | spectrum | tfestimate
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Purpose Nuttall-defined minimum 4-term Blackman-Harris window

Syntax w = nuttallwin(N)
w = nuttalwin(N,SFLAG)

Description w = nuttallwin(N) returns a Nuttall defined N-point, 4-term
symmetric Blackman-Harris window in the column vector w. The
window is minimum in the sense that its maximum sidelobes
are minimized. The coefficients for this window differ from the
Blackman-Harris window coefficients computed with blackmanharris
and produce slightly lower sidelobes.

w = nuttalwin(N,SFLAG) uses SFLAG window sampling. SFLAG can
be 'symmetric' or 'periodic'. The default is 'symmetric'. You can
find the equations defining the symmetric and periodic windows in
“Definitions” on page 1-724.

Examples Compare 64-point Blackman-Harris and Nuttall’s Blackman-Harris
windows and plot them using WVTool:

L = 64;
w = blackmanharris(L);
y = nuttallwin(L);
wvtool(w,y)
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The maximum difference between the two windows is

max(abs(y-w))

ans =

0.0099

Definitions The equation for the symmetric Nuttall defined 4-term
Blackman-Harris window is
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where n= 0,1,2, ... N-1.

The equation for the periodic Nuttall defined 4-term Blackman-Harris
window is
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where n= 0,1,2, ... N-1. The periodic window is N-periodic.

The coefficients for this window are

a0 = 0.3635819

a1 = 0.4891775

a2 = 0.1365995

a3 = .0106411

References [1] Nuttall, Albert H. “Some Windows with Very Good Sidelobe
Behavior.” IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. ASSP-29 (February 1981). pp. 84-91.

See Also barthannwin | bartlett | blackmanharris | bohmanwin | parzenwin
| rectwin | triang | window | wintool | wvtool
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Purpose Overshoot metrics of bilevel waveform transitions

Syntax OS = overshoot(X)
OS = overshoot(X,FS)
OS = overshoot(X,T)
[OS,OSLEV,OSINST] = overshoot(...)
[...] = overshoot(...,Name,Value)
overshoot(...)

Description OS = overshoot(X) returns the greatest absolute deviations larger
than the final state levels of each transition in the bilevel waveform,
X. The overshoots, OS, are expressed as a percentage of the difference
between the state levels. The length of OS corresponds to the number
of transitions detected in the input signal. The sample instants in
X correspond to the vector indices. To determine the transitions,
overshoot estimates the state levels of the input waveform by a
histogram method. overshoot identifies all intervals which cross the
upper-state boundary of the low state and the lower-state boundary of
the high state. The low-state and high-state boundaries are expressed
as the state level plus or minus a multiple of the difference between the
state levels. See “State-Level Tolerances” on page 1-731.

OS = overshoot(X,FS) specifies the sampling frequency in hertz. The
sampling frequency determines the sample instants corresponding to
the elements in X. The first sample instant in X corresponds to t=0.

OS = overshoot(X,T) specifies the sample instants, T, as a vector with
the same number of elements as X.

[OS,OSLEV,OSINST] = overshoot(...) returns the levels, OSLEV, and
sample instants,OSINST, of the overshoots for each transition.

[...] = overshoot(...,Name,Value) returns the greatest
deviations larger than the final state level with additional options
specified by one or more Name,Value pair arguments.

overshoot(...) plots the bilevel waveform and marks the location
of the overshoot of each transition as well as the lower and upper
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reference-level instants and the associated reference levels. The state
levels and associated lower and upper-state boundaries are also plotted.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’PctRefLevels’

Reference levels as a percentage of the waveform amplitude. The
lower-state level is defined to be 0 percent. The upper-state level
is defined to be 100 percent. The value of 'PCTREFLEVELS' is a
two-element real row vector whose elements correspond to the lower
and upper percent reference levels.

Default: [10 90]

’Region’

Specifies the region over which to compute the overshoot. Valid
values for 'Region' are 'Preshoot' or 'Postshoot'. If you specify
'Preshoot', the end of the pretransition aberration region is defined
as the last instant where the signal exits the first state. If you specify
'Postshoot', the start of the posttransition aberration region is defined
as the instant when the signal enters the second state.

Default: 'Postshoot'

’SeekFactor’
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Aberration region duration. Specifies the duration of the region over
which to compute the overshoot for each transition as a multiple of
the corresponding transition duration. If the edge of the waveform is
reached, or a complete intervening transition is detected before the
duration aberration region duration elapses, the duration is truncated
to the edge of the waveform or the start of the intervening transition.

Default: 3

’StateLevels’

Lower and upper state levels. Specifies the levels to use for the lower
and upper state levels as a two-element real row vector whose first
and second elements correspond to the lower and upper state levels of
the input waveform.

’Tolerance’

Specifies the tolerance that the initial and final levels of each transition
must be within the respective state levels. The 'Tolerance' value
is a scalar expressed as the percentage of the difference between the
upper and lower state levels.

Default: 2

Output
Arguments

OS

Overshoots expressed as a percentage of the state levels. The overshoot
percentages are computed based on the greatest deviation from the final
state level in each transition. By default overshoots are computed for
posttransition aberration regions. See “Overshoot” on page 1-729.

OSLEV

Level of the pretransition or posttransition overshoot.

OSINST
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Sample instants of pretransition or posttransition overshoots. If you
specify the sampling frequency or sampling instants, the overshoot
instants are in seconds. If you do not specify the sampling frequency or
sampling instants, the overshoot instants are the indices of the input
vector.

Definitions Overshoot

For a positive-going (positive-polarity) pulse, overshoot expressed as
a percentage is

100 2

2 1
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(

)
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where O is the maximum deviation greater the high-state level, S2 is
the high state, and S1 is the low state.

For a negative-going (negative-polarity) pulse, overshoot expressed as
a percentage is
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The following figure illustrates the calculation of overshoot for a
positive-going transition.
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The red dashed lines indicate the estimated state levels. The
double-sided black arrow depicts the difference between the high and
low-state levels. The solid black line indicates the difference between
the overshoot value and the high-state level.
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State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The
estimated state levels are indicated by a dashed red line.
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Examples Overshoot Percentage in Posttransition Aberration Region

Determine the maximum percent overshoot relative to the high-state
level in a 2.3 V clock waveform.
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Load the 2.3 V clock data. Plot the waveform. In this example, you
see that the maximum overshoot in the posttransition region occurs
near index 22.

load('transitionex.mat', 'x');
plot(x);
set(gca,'xtick',[1 6 12 18 22 28 34 40]);

Determine the maximum percent overshoot.

os = overshoot(x);

Overshoot Percentage, Levels, and Sample Instant in
Posttransition Aberration Region

Determine the maximum percent overshoot relative to the high-state
level, the level of the overshoot, and the sample instant in a 2.3 V clock
waveform.

Load the 2.3 V clock data with sampling instants. Plot the waveform.
The clock data is sampled at 4 MHz.

load('transitionex.mat', 'x','t');
plot(t,x);

Determine the maximum percent overshoot, the level of the overshoot
in volts, and the sampling instant where the maximum overshoot
occurs. Plot the result.

[os,oslev,osinst] = overshoot(x,t);
plot(t.*1e6,x); xlabel('Microseconds');
hold on; grid on;
plot(osinst*1e6,oslev,'ro','markerfacecolor',[1 0 0]);

Overshoot Percentage, Levels, and Sample Instant in
Pretransition Aberration Region

Determine the maximum percent overshoot relative to the low-state
level, the level of the overshoot, and the sample instant in a 2.3 V clock
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waveform. Specify the 'Region' as 'Preshoot' to output pretransition
metrics.

Load the 2.3 V clock data with sampling instants. Plot the waveform.
The clock data is sampled at 4 MHz.

load('transitionex.mat', 'x','t');
plot(t,x);

Determine the maximum percent overshoot, the level of the overshoot
in volts, and the sampling instant where the maximum overshoot
occurs. Plot the result.

load('transitionex.mat', 'x','t');
[os,oslev,osinst] = overshoot(x,t,'Region','Preshoot');
plot(t.*1e6,x); xlabel('Microseconds');
hold on; grid on;
plot(osinst*1e6,oslev,'ro','markerfacecolor',[1 0 0]);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003, pp. 15–17.

See Also settlingtime | statelevels | overshoot
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Purpose Parzen (de la Valle-Poussin) window

Syntax w = parzenwin(L)

Description w = parzenwin(L) returns the L-point Parzen (de la Valle-Poussin)
window in column vector w. Parzen windows are piecewise cubic
approximations of Gaussian windows. Parzen window sidelobes fall
off as 1/ω4.

Examples Compare 64-point Parzen and Gaussian windows and display the result
using sigwin window objects and wintool:

wintool(sigwin.parzenwin(64),sigwin.gausswin(64))
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Algorithms The following equation defines the N–point Parzen window over the
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References [1] Harris, F.J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66,
No. 1 (January 1978).

See Also barthannwin | bartlett | blackmanharris | bohmanwin | nuttallwin
| rectwin | triang | window | wintool | wvtool
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Purpose PSD using Burg method

Syntax Pxx = pburg(x,order)
Pxx = pburg(x,order,nfft)
[Pxx,w] = pburg(...)
[Pxx,w] = pburg(x,order,w)
Pxx = pburg(x,order,nfft,fs)
Pxx = pburg(x,order,f,fs)
[Pxx,f] = pburg(x,order,nfft,fs)
[Pxx,f] = pburg(x,order,f,fs)
[Pxx,f] = pburg(x,order,nfft,fs,freqrange)
[Pxx,w] = pburg(x,order,nfft,freqrange)
[Pxx,f,Pxxc] = pburg(...,'ConfidenceLevel',P)
pburg(...)

Description Pxx = pburg(x,order) implements the Burg algorithm, a parametric
spectral estimation method, and returns Pxx, an estimate of the power
spectral density (PSD) of the vector x. The entries of x represent
samples of a discrete-time signal, and order is the integer specifying
the order of an autoregressive (AR) prediction model for the signal,
used in estimating the PSD.

The power spectral density is calculated in units of power per radians
per sample. Real-valued inputs produce full power one-sided (in
frequency) PSDs (by default), while complex-valued inputs produce
two-sided PSDs.

In general, the length of the FFT and the values of the input x
determine the length of Pxx and the range of the corresponding
normalized frequencies. For this syntax, the (default) FFT length is
256. The following table indicates the length of Pxx and the range of the
corresponding normalized frequencies for this syntax.
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PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data Length of Pxx

Range of the
Corresponding
Normalized
Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

Pxx = pburg(x,order,nfft) uses the integer FFT length nfft to
calculate the PSD vector Pxx.

[Pxx,w] = pburg(...) also returns w, a vector of normalized angular
frequencies at which the two-sided PSD is estimated. Pxx and w have
the same length. The units for w are rad/sample.

The length of Pxx and the frequency range for w depend on nfft and the
values of the input x. The following table indicates the length of Pxx
and the frequency range for w in this syntax.

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

[Pxx,w] = pburg(x,order,w) uses a vector of normalized frequencies
w with two or more elements to compute the PSD at those frequencies
and returns a two-sided PSD.

Pxx = pburg(x,order,nfft,fs)

or
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Pxx = pburg(x,order,f,fs) uses the integer FFT length nfft to
calculate the PSD vector Pxx or uses the vector of frequencies f in Hz
and the sampling frequency fs to compute the two-sided PSD vector
Pxx at those frequencies. If you specify nfft as the empty vector [], it
uses the default value of 256. If you specify fs as the empty vector
[], the sampling frequency fs defaults to 1 Hz. The spectral density
produced is calculated in units of power per Hz.

[Pxx,f] = pburg(x,order,nfft,fs)

or

[Pxx,f] = pburg(x,order,f,fs) returns the frequency vector f. In
this case, the units for the frequency vector are in Hz. The frequency
range for f depends on nfft, fs, and the values of the input x. The
length of Pxx is the same as in the table above. The following table
indicates the frequency range for f for this syntax.

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex
Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

[Pxx,f] = pburg(x,order,nfft,fs,freqrange) or

[Pxx,w] = pburg(x,order,nfft,freqrange) specifies the range of
frequency values to include in the output frequency vectors, f or w. This
syntax is useful when x is real. freqrange can be either:

• 'onesided' — returns the one-sided PSD of a real input signal, x.
If nfft is even, Pxx has length nfft/2+1 and is computed over the
interval [0,π]. If nfft is odd, the length of Pxx is (nfft+1)/2 and the
frequency interval is [0,π). When you specify fs , the intervals are
[0,fs/2] and [0,fs/2) for even and odd length nfft respectively.
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• 'twosided'— returns the two-sided PSD for either real or complex
input, x. In this case, Pxx has length nfft and is computed over the
interval [0,2π). When you specify fs, the frequency interval is [0,fs).

• 'centered'— returns the centered two-sided PSD for either real or
complex input, x. In this case, Pxx has length nfft and is computed
over the interval (-π, π] for even length nfft and (-π, π) for odd length
nfft. When you specify fs, the frequency intervals are (-fs/2, fs/2]
and (-fs/2,fs/2) for even and odd length nfft respectively.

[Pxx,f,Pxxc] = pburg(...,'ConfidenceLevel',P) returns the
P100% confidence interval for Pxx, where P is a nonnegative scalar
between 0 and 1. The default value for P is 0.95. Large-sample
confidence intervals are computed using a Gaussian probability density
function. Pxxc is N-by-2 matrix, where N is the length of Pxx. The first
column, Pxxc(:,1), is the lower bound of the confidence interval. The
second column, Pxxc(:,2), is the upper bound. See [1] for a description
of approximate large-sample confidence intervals for AR PSD estimates.

pburg(...) with no outputs plots the PSD in the current figure
window. The frequency range on the plot is the same as the range of
output w (or f) for a given set of parameters.

Tips The power spectral density is computed as the distribution of power
per unit frequency. This algorithm depends on your selecting an
appropriate model order for your signal.

Examples Compare Filter Response with Process Realization

The Burg method estimates the spectral density by fitting an AR
prediction model of a given order to the signal, so first generate a signal
from an AR (all-pole) model of a given order. Use freqz to check the
magnitude of the frequency response of your AR filter. Then, generate
the input signal x by filtering white noise through the AR filter.
Estimate the PSD of x based on a fourth-order AR prediction model
because in this case we know that the original AR system model a has
order 4:

% Define AR filter coefficients
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a = [1 -2.2137 2.9403 -2.1697 0.9606];
[H,w] = freqz(1,a,256); % AR filter freq response
% Scale to make one-sided PSD
Hp = plot(w/pi,20*log10(2*abs(H)/(2*pi)),'r');
hold on;
rng default;
x = filter(1,a,randn(256,1)); % AR system output
pburg(x,4,511);
xlabel('Normalized frequency (\times \pi rad/sample)')
ylabel('One-sided PSD (dB/rad/sample)')
legend('PSD of model output','PSD estimate of x')
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Large-Sample Confidence Intervals for AR PSD Estimate

This example shows you how to obtain and plot confidence intervals
for an AR PSD estimate.

Create the coefficients for an AR(4) system function. Use freqz to
obtain and plot the true power spectral density.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
plot(F,20*log10(abs(H)),'b','linewidth',2);
xlabel('Hz'); ylabel('dB/Hz');
title('True Power Spectral Density of AR(4) System Function')
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Create a realization of the AR(4) process represented by the coefficients.
Set the random number generator to the default settings for
reproducible results. Obtain approximate large-sample 99%-confidence
intervals for the PSD estimate.

rng default;
x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F,Pxxc] = pburg(y,4,1024,1,'ConfidenceLevel',0.99);
plot(F,10*log10(Pxx),'b'); hold on;
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plot(F,10*log10(Pxxc),'r'); xlabel('Hz'); ylabel('dB/Hz');
legend('PSD Estimate', '99%-Confidence Intervals')
title('PSD Estimate with 99%-Confidence Intervals')

Algorithms You can use linear prediction filters to model the second-order statistical
characteristics of a signal. The prediction filter output can be used to
model the signal when the input is white noise.

The Burg method fits an AR linear prediction filter model of the
specified order to the input signal by minimizing (using least squares)
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the arithmetic mean of the forward and backward prediction errors.
The spectral density then is computed from the frequency response of
the prediction filter. The AR filter parameters are constrained to satisfy
the Levinson-Durbin recursion.

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988, pp. 194–195.

[2] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1987, Chapter 7.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997.

See Also arburg | lpc | pcov | peig | periodogram | pmcov | pmtm | pmusic
| pwelch | pyulear
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Purpose PSD using covariance method

Syntax Pxx = pcov(x,order)
Pxx = pcov(x,order,nfft)
[Pxx,w] = pcov(...)
[Pxx,w] = pcov(x,order,w)
Pxx = pcov(x,order,nfft,fs)
Pxx = pcov(x,order,f,fs)
[Pxx,f] = pcov(x,order,nfft,fs)
[Pxx,f] = pcov(x,order,f,fs)
[Pxx,f] = pcov(x,order,nfft,fs,freqrange)
[Pxx,w] = pcov(x,order,nfft,freqrange)
[Pxx,f,Pxxc] = pcov(...,'ConfidenceLevel',P)
pcov(...)

Description Pxx = pcov(x,order) implements the covariance algorithm, a
parametric spectral estimation method, and returns Pxx, an estimate
of the power spectral density (PSD) of the vector x. The entries of x
represent samples of a discrete-time signal, and where order is the
integer specifying the order of an autoregressive (AR) prediction model
for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians
per sample. Real-valued inputs produce full power one-sided (in
frequency) PSDs (by default), while complex-valued inputs produce
two-sided PSDs.

In general, the length of the FFT and the values of the input x
determine the length of Pxx and the range of the corresponding
normalized frequencies. For this syntax, the (default) FFT length is
256. The following table indicates the length of Pxx and the range of the
corresponding normalized frequencies for this syntax.
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PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data Length of Pxx

Range of the
Corresponding
Normalized
Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

Pxx = pcov(x,order,nfft) uses the integer FFT length nfft to
calculate the PSD vector Pxx.

[Pxx,w] = pcov(...) also returns w, a vector of normalized angular
frequencies at which the two-sided PSD is estimated. Pxx and w have
the same length. The units for w are rad/sample.

The length of Pxx and the frequency range for w depend on nfft and the
values of the input x. The following table indicates the length of Pxx
and the frequency range for w in this syntax.

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

[Pxx,w] = pcov(x,order,w) uses a vector of normalized frequencies w
with two or more elements to compute the PSD at those frequencies and
returns a two-sided PSD.

Pxx = pcov(x,order,nfft,fs)

or
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Pxx = pcov(x,order,f,fs) uses the integer FFT length nfft to
calculate the PSD vector Pxx or uses the vector of frequencies f in Hz
and the sampling frequency fs to compute the two-sided PSD vector
Pxx at those frequencies. If you specify nfft as the empty vector [], it
uses the default value of 256. If you specify fs as the empty vector
[], the sampling frequency fs defaults to 1 Hz. The spectral density
produced is calculated in units of power per Hz.

[Pxx,f] = pcov(x,order,nfft,fs)

or

[Pxx,f] = pcov(x,order,f,fs) returns the frequency vector f. In this
case, the units for the frequency vector are in Hz. The frequency range
for f depends on nfft, fs, and the values of the input x. The length of
Pxx is the same as in the table above. The following table indicates the
frequency range for f for this syntax.

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex
Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

[Pxx,f] = pcov(x,order,nfft,fs,freqrange) or

[Pxx,w] = pcov(x,order,nfft,freqrange) specifies the range of
frequency values to include in the output frequency vectors, f or w. This
syntax is useful when x is real. freqrange can be either:

• 'onesided' — returns the one-sided PSD of a real input signal, x.
If nfft is even, Pxx has length nfft/2+1 and is computed over the
interval [0,π]. If nfft is odd, the length of Pxx is (nfft+1)/2 and the
frequency interval is [0,π). When your specify fs , the intervals are
[0,fs/2] and [0,fs/2) for even and odd length nfft respectively.
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• 'twosided'— returns the two-sided PSD for either real or complex
input, x. In this case, Pxx has length nfft and is computed over the
interval [0,2π). When you specify fs, the frequency interval is [0,fs).

• 'centered'— returns the centered two-sided PSD for either real or
complex input, x. In this case, Pxx has length nfft and is computed
over the interval (-π, π] for even length nfft and (-π, π) for odd length
nfft. When you specify fs, the frequency intervals are (-fs/2, fs/2]
and (-fs/2,fs/2) for even and odd length nfft respectively.

[Pxx,f,Pxxc] = pcov(...,'ConfidenceLevel',P) returns the
P100% confidence interval for Pxx, where P is a nonnegative scalar
between 0 and 1. The default value for P is 0.95. Large-sample
confidence intervals are computed using a Gaussian probability density
function. Pxxc is N-by-2 matrix, where N is the length of Pxx. The first
column, Pxxc(:,1), is the lower bound of the confidence interval. The
second column, Pxxc(:,2), is the upper bound. See [1] for a description
of approximate large-sample confidence intervals for AR PSD estimates.

pcov(...) with no outputs plots the PSD in the current figure window.
The frequency range on the plot is the same as the range of output w (or
f) for a given set of parameters.

Tips The power spectral density is computed as the distribution of power
per unit frequency.

This algorithm depends on your selecting an appropriate model order
for your signal.

Examples Covariance Method AR PSD Estimate

Because the covariance method estimates the spectral density by fitting
an AR prediction model of a given order to the signal, first generate a
signal from an AR (all-pole) model of a given order. You can use freqz
to check the magnitude of the frequency response of your AR filter.
This will give you an idea of what to expect when you estimate the
PSD using pcov:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
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freqz(1,a) % AR filter frequency response

title('AR System Frequency Response')

Now generate the input signal x by filtering white noise through the
AR filter. Estimate the PSD of x based on a fourth-order AR prediction
model since in this case we know that the original AR system model a
has order 4:

% Signal generated from AR filter
x = filter(1,a,randn(256,1));
% Fourth-order estimate
pcov(x,4)

Large-Sample Confidence Intervals for AR PSD Estimate

This example shows you how to obtain and plot confidence intervals
for an AR PSD estimate.

Create the coefficients for an AR(4) system function. Use freqz to
obtain and plot the true power spectral density.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
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plot(F,20*log10(abs(H)),'b','linewidth',2);
xlabel('Hz'); ylabel('dB/Hz');
title('True Power Spectral Density of AR(4) System Function')

Create a realization of the AR(4) process represented by the coefficients.
Set the random number generator to the default settings for
reproducible results. Obtain approximate large-sample 99%-confidence
intervals for the PSD estimate.

rng default;
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x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F,Pxxc] = pcov(y,4,1024,1,'ConfidenceLevel',0.99);
plot(F,10*log10(Pxx),'b'); hold on;
plot(F,10*log10(Pxxc),'r'); xlabel('Hz'); ylabel('dB/Hz');
legend('PSD Estimate', '99%-Confidence Intervals')
title('PSD Estimate with 99%-Confidence Intervals')
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Algorithms Linear prediction filters can be used to model the second-order
statistical characteristics of a signal. The prediction filter output can be
used to model the signal when the input is white noise.

The covariance method estimates the PSD of a signal using the
covariance method. The covariance (or nonwindowed) method fits an AR
linear prediction filter model to the signal by minimizing the forward
prediction error (based on causal observations of your input signal) in
the least squares sense. The spectral estimate returned by pcov is the
squared magnitude of the frequency response of this AR model.

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988, pp. 194–195.

[2] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1987, Chapter 7.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997.

See Also arcov | lpc | pburg | peig | periodogram | pcov | pmtm | pmusic
| pwelch | pyulear
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Purpose Maximum-to-minimum difference

Syntax Y = peak2peak(X)
Y = peak2peak(X,DIM)

Description Y = peak2peak(X) returns the difference between the maximum and
minimum values in X. peak2peak operates along the first nonsingleton
dimension of X by default. For example, if X is a row or column vector,
Y is a real-valued scalar. If Y is an N-by-M matrix with N>1, Y is a
1-by-M row vector containing the maximum-to-minimum differences
of the columns of X.

Y = peak2peak(X,DIM) computes the maximum-to-minimum
differences of X along the dimension, DIM.

Input
Arguments

X

Real- or complex-valued input vector or matrix. By default, peak2peak
acts along the first nonsingleton dimension of X. For complex-valued
inputs, peak2peak identifies the maximum and minimum in absolute
value. peak2peak subtracts the complex number with the minimum
modulus from the complex number with the maximum modulus.

DIM

Dimension for maximum-to-minimum difference. The optional DIM
input argument specifies the dimension along which to compute the
maximum-to-minimum differences.

Default: First nonsingleton dimension

Output
Arguments

Y

Maximum-to-minimum difference. For vectors, Y is a real-valued
scalar. For matrices, Y contains the maximum-to-minimum differences
computed along the specified dimension, DIM. By default, DIM is the
first nonsingleton dimension.
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Examples Peak-to-Peak Difference of Sinusoid

Compute the maximum-to-minimum difference of a 100-Hz sinusoid
sampled at 1 kHz.

t = 0:0.001:1-0.001;
X = cos(2*pi*100*t);
Y = peak2peak(X);

Peak-to-Peak Difference of Complex Exponential

Compute the maximum-to-minimum difference of a complex exponential
with a frequency of π/4 radians/sample.

Create a complex exponential with a frequency of π/4 radians/sample.
Find the peak-to-peak difference.

n = 0:99;
x = exp(1j*pi/4*n);
maxmin = peak2peak(x);

Peak-to-Peak Differences of 2-D Matrix

Create a matrix where each column is a 100-Hz sinusoid sampled at 1
kHz with a different amplitude. The amplitude is equal to the column
index.

Compute the maximum-to-minimum differences of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)';
X = repmat(x,1,4);
amp = 1:4;
amp = repmat(amp,1e3,1);
X = X.*amp;
Y = peak2peak(X);
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Peak-to-Peak Differences of 2-D Matrix Along Specified
Dimension

Create a matrix where each row is a 100-Hz sinusoid sampled at 1 kHz
with a different amplitude. The amplitude is equal to the row index.

Compute the maximum-to-minimum differences of the rows specifying
the dimension equal to 2 with the DIM argument.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);
X = repmat(x,4,1);
amp = (1:4)';
amp = repmat(amp,1,1e3);
X = X.*amp;
Y = peak2peak(X,2);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.

See Also min | max | peak2rms
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Purpose Peak-magnitude-to-RMS ratio

Syntax Y = peak2rms(X)
Y = peak2rms(X,DIM)

Description Y = peak2rms(X) returns the ratio of the largest absolute value in X to
the root-mean-square (RMS) value of X. peak2rms operates along the
first nonsingleton dimension of X. For example, if X is a row or column
vector, Y is a real-valued scalar. If Y is an N-by-M matrix with N>1, Y
is a 1-by-M row vector containing the peak-magnitude-to-RMS levels
of the columns of Y.

Y = peak2rms(X,DIM) computes the peak-magnitude-to-RMS level of X
along the dimension, DIM.

Input
Arguments

X

Real– or complex-valued input vector or matrix. By default, peak2rms
acts along the first nonsingleton dimension of X.

DIM

Dimension for peak-magnitude-to-RMS ratio. The optional DIM
input argument specifies the dimension along which to compute the
peak-magnitude-to-RMS level.

Default: First nonsingleton dimension

Output
Arguments

Y

Peak-magnitude-to-RMS ratio. For vectors, Y is a real-valued scalar.
For matrices, Y contains the peak-magnitude-to-RMS levels computed
along the specified dimension, DIM. By default, DIM is the first
nonsingleton dimension.

Definitions Peak-magnitude-to-RMS Level

The peak-magnitude-to-RMS ratio is
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where the l-infinity norm and RMS values are computed along the
specified dimension.

Examples Peak-magnitude-to-RMS Ratio of Sinusoid

Compute the peak-magnitude-to-RMS ratio of a 100-Hz sinusoid
sampled at 1 kHz.

t = 0:0.001:1-0.001;
X = cos(2*pi*100*t);
Y = peak2rms(X);

Peak-magnitude-to-RMS Ratio of Complex Exponential

Compute the peak-magnitude-to-RMS ratio of a complex exponential
with a frequency of π/4 radians/sample.

Create a complex exponential with a frequency of π/4 radians/sample.
Find the peak-magnitude-to-RMS ratio.

n = 0:99;
X = exp(1j*pi/4*n);
Y = peak2rms(X);

Peak-magnitude-to-RMS ratio of 2-D Matrix

Create a matrix where each column is a 100-Hz sinusoid sampled at 1
kHz with a different amplitude. The amplitude is equal to the column
index.

Compute the peak-magnitude-to-RMS ratio of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)';
X = repmat(x,1,4);
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amp = 1:4;
amp = repmat(amp,1e3,1);
X = X.*amp;
Y = peak2rms(X);

Peak-magnitude-to-RMS ratio of 2-D Matrix Along Specified
Dimension

Create a matrix where each row is a 100-Hz sinusoid sampled at 1 kHz
with a different amplitude. The amplitude is equal to the row index.

Compute the peak-magnitude-to-RMS ratio of the rows specifying the
dimension equal to 2 with the DIM argument.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);
X = repmat(x,4,1);
amp = (1:4)';
amp = repmat(amp,1,1e3);
X = X.*amp;
Y = peak2rms(X,2);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.

1-759



peig

Purpose Pseudospectrum using eigenvector method

Syntax [S,w] = peig(x,p)
[S,w] = peig(x,p,w)
[S,w] = peig(...,nfft)
[S,f] = peig(x,p,nfft,fs)
[S,f] = peig(x,p,f,fs)
[S,f] = peig(...,'corr')
[S,f] = peig(x,p,nfft,fs,nwin,noverlap)
[...] = peig(...,freqrange)
[...,v,e] = peig(...)
peig(...)

Description [S,w] = peig(x,p) implements the eigenvector spectral estimation
method and returns S, the pseudospectrum estimate of the input signal
x, and w, a vector of normalized frequencies (in rad/sample) at which the
pseudospectrum is evaluated. The pseudospectrum is calculated using
estimates of the eigenvectors of a correlation matrix associated with the
input data x, where x is specified as either:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of
an array of sensors, as in array processing), such that x'*x is an
estimate of the correlation matrix

Note You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of
p, represents a threshold that is multiplied by λmin, the smallest
estimated eigenvalue of the signal’s correlation matrix. Eigenvalues
below the threshold λmin*p(2) are assigned to the noise subspace.

1-760



peig

In this case, p(1) specifies the maximum dimension of the signal
subspace.

Note If the inputs to peig are real sinusoids, set the value of p to
double the number of input signals. If the inputs are complex sinusoids,
set p equal to the number of inputs.

The extra threshold parameter in the second entry in p provides you
more flexibility and control in assigning the noise and signal subspaces.

S and w have the same length. In general, the length of the FFT and the
values of the input x determine the length of the computed S and the
range of the corresponding normalized frequencies. The following table
indicates the length of S (and w) and the range of the corresponding
normalized frequencies for this syntax.

S Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

Length of S and
w

Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

[S,w] = peig(x,p,w) returns the pseudospectrum in the vector S
computed at the normalized frequencies specified in vector w, which
has two or more elements

[S,w] = peig(...,nfft) specifies the integer length of the FFT nfft
used to estimate the pseudospectrum. The default value for nfft
(entered as an empty vector []) is 256.

The following table indicates the length of S and w, and the frequency
range for w for this syntax.
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S and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of S
and w

Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

[S,f] = peig(x,p,nfft,fs) returns the pseudospectrum in the vector
S evaluated at the corresponding vector of frequencies f (in Hz). You
supply the sampling frequency fs in Hz. If you specify fs with the
empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the
input x. The length of S (and f) is the same as in the S and Frequency
Vector Characteristics on page 1-762 above. The following table
indicates the frequency range for f for this syntax.

S and Frequency Vector Characteristics with fs Specified

Real/Complex Input
Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

[S,f] = peig(x,p,f,fs) returns the pseudospectrum in the vector S
computed at the frequencies specified in vector f, which has two or
more elements

[S,f] = peig(...,'corr') forces the input argument x to be interpreted
as a correlation matrix rather than matrix of signal data. For this
syntax x must be a square matrix, and all of its eigenvalues must be
nonnegative.
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[S,f] = peig(x,p,nfft,fs,nwin,noverlap) allows you to specify
nwin, a scalar integer indicating a rectangular window length, or
a real-valued vector specifying window coefficients. Use the scalar
integer noverlap in conjunction with nwin to specify the number of
input sample points by which successive windows overlap. noverlap
is not used if x is a matrix. The default value for nwin is 2*p(1) and
noverlap is nwin-1.

With this syntax, the input data x is segmented and windowed before
the matrix used to estimate the correlation matrix eigenvalues is
formulated. The segmentation of the data depends on nwin, noverlap,
and the form of x. Comments on the resulting windowed segments are
described in the following table.

Windowed Data Depending on x and nwin

Input data x Form of nwin Windowed Data

Data vector Scalar Length is nwin

Data vector Vector of coefficients Length is
length(nwin)

Data matrix Scalar Data is not windowed.

Data matrix Vector of coefficients length(nwin) must
be the same as the
column length of x, and
noverlap is not used.

See the table, Eigenvector Length Depending on Input Data and Syntax
on page 1-765, for related information on this syntax.

Note The arguments nwin and noverlap are ignored when you include
the string 'corr' in the syntax.
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[...] = peig(...,freqrange) specifies the range of frequency values
to include in f or w. This syntax is useful when x is real. freqrange
can be either:

• 'onesided' — returns the one-sided PSD of a real input signal, x.
If nfft is even, Pxx has lengthnfft/2+1 and is computed over the
interval [0,π]. If nfft is odd, the length of Pxx is (nfft+1)/2 and the
frequency interval is [0,π). When your specify fs , the intervals are
[0,fs/2) and [0,fs/2] for even and odd lengthnfftrespectively.

• 'twosided'— returns the two-sided PSD for either real or complex
input, x. In this case, Pxx has length nfft and is computed over the
interval [0,2π). When you specify fs, the frequency interval is [0,fs).

• 'centered'— returns the centered two-sided PSD for either real or
complex input, x. In this case, Pxx has length nfft and is computed
over the interval (-π, π] for even length nfft and (-π, π]) for odd
length nfft. When you specify fs, the frequency intervals are (-fs/2,
fs/2] and (-fs/2,fs/2) for even and odd length nfft respectively.

Note You can put the string arguments freqrange or 'corr'
anywhere in the input argument list after p.

[...,v,e] = peig(...) returns the matrix v of noise eigenvectors,
along with the associated eigenvalues in the vector e. The columns of v
span the noise subspace of dimension size(v,2). The dimension of the
signal subspace is size(v,1)-size(v,2). For this syntax, e is a vector
of estimated eigenvalues of the correlation matrix.

peig(...) with no output arguments plots the pseudospectrum in the
current figure window.

Tips In the process of estimating the pseudospectrum, peig computes the
noise and signal subspaces from the estimated eigenvectors vj and
eigenvalues λj of the signal’s correlation matrix. The smallest of these
eigenvalues is used in conjunction with the threshold parameter p(2)
to affect the dimension of the noise subspace in some cases.
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The length n of the eigenvectors computed by peig is the sum of the
dimensions of the signal and noise subspaces. This eigenvector length
depends on your input (signal data or correlation matrix) and the
syntax you use.

The following table summarizes the dependency of the eigenvector
length on the input argument.

Eigenvector Length Depending on Input Data and Syntax

Form of Input Data x
Comments on the
Syntax

Length n of
Eigenvectors

Row or column vector nwin is specified as a
scalar integer.

nwin

Row or column vector nwin is specified as a
vector.

length(nwin)

Row or column vector nwin is not specified. 2*p(1)

l-by-m matrix If nwin is specified as
a scalar, it is not used.
If nwin is specified as a
vector, length(nwin)
must equal m.

m

m-by-m nonnegative
definite matrix

The string 'corr' is
specified and nwin is
not used.

m

You should specify nwin > p(1) or length(nwin) > p(1) if you want
p(2) > 1 to have any effect.

Examples Implement the eigenvector method to find the pseudospectrum of the
sum of three sinusoids in noise, using the default FFT length of 256. The
inputs are complex sinusoids so you set p equal to the number of inputs.
Use the modified covariance method for the correlation matrix estimate:

n=0:99;
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s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
X=corrmtx(s,12,'mod');
peig(X,3,'whole') % Uses default NFFT of 256

Algorithms The eigenvector method estimates the pseudospectrum from a signal
or a correlation matrix using a weighted version of the MUSIC
algorithm derived from Schmidt’s eigenspace analysis method [1] [2].
The algorithm performs eigenspace analysis of the signal’s correlation
matrix in order to estimate the signal’s frequency content. The
eigenvalues and eigenvectors of the signal’s correlation matrix are
estimated using svd if you don’t supply the correlation matrix. This
algorithm is particularly suitable for signals that are the sum of
sinusoids with additive white Gaussian noise.

The eigenvector method produces a pseudospectrum estimate given by
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where N is the dimension of the eigenvectors and vk is the kth
eigenvector of the correlation matrix of the input signal. The integer
p is the dimension of the signal subspace, so the eigenvectors vk used
in the sum correspond to the smallest eigenvalues λk of the correlation
matrix. The eigenvectors used span the noise subspace. The vector e(f)
consists of complex exponentials, so the inner product

v ek
H f( )

amounts to a Fourier transform. This is used for computation of the
pseudospectrum. The FFT is computed for each vk and then the squared
magnitudes are summed and scaled.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1987, pp. 373-378.
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[2] Schmidt, R.O, “Multiple Emitter Location and Signal Parameter
Estimation,” IEEE Trans. Antennas Propagation, Vol. AP-34 (March
1986), pp.276-280.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997.

See Also corrmtx | dspdata | pburg | periodogram | pmtm | pmusic | prony |
pwelch | rooteig | rootmusic | spectrum.eigenvector
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Purpose Periodogram power spectral density estimate

Syntax pxx = periodogram(x)
pxx = periodogram(x,window)
pxx = periodogram(x,window,nfft)

[pxx,w] = periodogram( ___ )
[pxx,f] = periodogram( ___ ,fs)

[pxx,w] = periodogram(x,window,w)
[pxx,f] = periodogram(x,window,f,fs)

[ ___ ] = periodogram(x,window, ___ ,freqrange)
[ ___ ] = periodogram(x,window, ___ ,spectrumtype)

[pxx,f,pxxc] =
periodogram( ___ ,'ConfidenceLevel',probability)

periodogram( ___ )

Description pxx = periodogram(x) returns the periodogram power spectral density
(PSD) estimate of the input signal, x, using a rectangular window. If x
is real-valued, pxx is a one-sided PSD estimate. If x is complex-valued,
pxx is a two-sided PSD estimate. The number of points, nfft, in the
discrete Fourier transform (DFT) is the maximum of 256 or the next
power of two greater than the signal length.

pxx = periodogram(x,window) returns the modified periodogram PSD
estimate using the window, window. window is a vector the same
length as x.

pxx = periodogram(x,window,nfft) uses nfft points in the discrete
Fourier transform (DFT). If nfft is greater than the signal length, x
is zero-padded to length nfft. If nfft is less than the signal length,
the signal is wrapped modulo nfft and summed using datawrap. For
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example, the input signal [1 2 3 4 5 6 7 8] with nfft equal to 4
results in the periodogram of sum([1 5; 2 6; 3 7; 4 8],2).

[pxx,w] = periodogram( ___ ) returns the normalized frequency
vector, w. If pxx is a one-sided periodogram, w spans the interval [0,π] if
nfft is even and [0,π) if nfft is odd. If pxx is a two-sided periodogram,
w spans the interval [0,2π).

[pxx,f] = periodogram( ___ ,fs) returns a frequency vector, f, in
cycles per unit time. The sampling frequency, fs, is the number of
samples per unit time. If the unit of time is seconds, then f is in
cycles/sec (Hz). For real–valued signals, f spans the interval [0,fs/2]
when nfft is even and [0,fs/2) when nfft is odd. For complex-valued
signals, f spans the interval [0,fs).

[pxx,w] = periodogram(x,window,w) returns the two-sided
periodogram estimates at the normalized frequencies specified in the
vector, w. The vector, w, must contain at least 2 elements.

[pxx,f] = periodogram(x,window,f,fs) returns the two-sided
periodogram estimates at the frequencies specified in the vector, f.
The vector, f, must contain at least 2 elements. The frequencies in f
are in cycles per unit time. The sampling frequency, fs, is the number
of samples per unit time. If the unit of time is seconds, then f is in
cycles/sec (Hz).

[ ___ ] = periodogram(x,window, ___ ,freqrange) returns the
periodogram over the frequency range specified by freqrange. Valid
options for freqrange are: 'onesided', 'twosided', or 'centered'.

[ ___ ] = periodogram(x,window, ___ ,spectrumtype) returns the
PSD estimate if spectrumtype is specified as 'psd' and returns the
power spectrum if spectrumtype is specified as 'power'.
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[pxx,f,pxxc] =
periodogram( ___ ,'ConfidenceLevel',probability) returns the
probabilityx100% confidence intervals for the PSD estimate in pxxc.

periodogram( ___ ) with no output arguments plots the periodogram
PSD estimate in dB per unit frequency in the current figure window.

Input
Arguments

x - Input signal
vector

Input signal, specified as a row or column vector.

Data Types
single | double
Complex Number Support: Yes

window - Window
rectwin(length(x)) (default) | [] | vector

Window, specified as a row or column vector the same length as the
input signal. If you specify window as empty, the default rectangular
window is used.

Data Types
single | double

nfft - Number of DFT points
max(256,2^nextpow2(length(x)) (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued
input signal, x, the PSD estimate, pxx has length (nfft/2+1) if nfft
is even, and (nfft+1)/2 if nfft is odd. For a complex-valued input
signal,x, the PSD estimate always has length nfft. If nfft is specified
as empty, the default nfft is used.

Data Types
single | double

fs - Sampling frequency
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positive scalar

Sampling frequency, specified as a positive scalar. The sampling
frequency is the number of samples per unit time. If the unit of time is
seconds, the sampling frequency has the units hertz.

w - Normalized frequencies for Goertzel algorithm
vector

Normalized frequencies for Goertzel algorithm, specified as a row or
column vector with at least 2 elements. Normalized frequencies are
in radians/sample.

Example: w = [pi/4 pi/2]

Data Types
double

f - Cyclical frequencies for Goertzel algorithm
vector

Cyclical frequencies for Goertzel algorithm, specified as a row or column
vector with at least 2 elements. The frequencies are in cycles per unit
time. The unit time is specified by the sampling frequency, fs. If fs
has units of samples/second, then f has units of Hz.

Example: fs = 1000; f= [100 200]

Data Types
double

freqrange - Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided',
'twosided', or 'centered'. The default is 'onesided' for real-valued
signals and 'twosided' for complex-valued signals. The frequency
ranges corresponding to each option are

• 'onesided'— returns the one-sided PSD estimate of a real-valued
input signal, x. If nfft is even, pxx will have length nfft/2+1 and is
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computed over the interval [0,π] radians/sample. If nfft is odd, the
length of pxx is (nfft+1)/2 and the interval is [0,π) radians/sample.
When fs is optionally specified, the corresponding intervals are
[0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time for even and
odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the
real-valued or complex-valued input, x. In this case, pxx has length
nfft and is computed over the interval [0,2π) radians/sample. When
fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for
either the real-valued or complex-valued input, x. In this case,
pxx has length nfft and is computed over the interval (-π,π]
radians/sample for even length nfft and (-π,π) radians/sample for
odd length nfft. When fs is optionally specified, the corresponding
intervals are (-fs/2, fs/2] cycles/unit time and (-fs/2, fs/2)
cycles/unit time for even and odd length nfft respectively.

Data Types
char

spectrumtype - Power spectrum scaling
'psd' (default) | 'power'

Power spectrum scaling, specified as one of 'psd' or 'power'. Omitting
the spectrumtype, or specifying 'psd', returns the power spectral
density. Specifying 'power' scales each estimate of the PSD by the
equivalent noise bandwidth of the window. Use the 'power' option to
obtain an estimate of the power at each frequency.

Data Types
char

probability - Confidence interval for PSD estimate
0.95 (default) | Scalar in the range (0,1)

Coverage probability for the true PSD, specified as a scalar in the range
(0,1). The output, pxxc, contains the lower and upper bounds of the
probabilityx100% interval estimate for the true PSD.
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Output
Arguments

pxx - PSD estimate
vector

PSD estimate, specified as a real-valued, nonnegative column vector.

Data Types
single | double

w - Normalized frequencies
vector

Normalized frequencies, specified as a real-valued column vector. If pxx
is a one-sided PSD estimate, w spans the interval [0,π] if nfft is even
and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate, w spans the
interval [0,2π). For a DC-centered PSD estimate, f spans the interval
(-π,π] radians/sample for even length nfft and (-π,π) radians/sample
for odd length nfft.

Data Types
double

f - Cyclical frequencies
vector

Cyclical frequencies, specified as a real-valued column vector. For a
one-sided PSD estimate, f spans the interval [0,fs/2] when nfft is
even and [0,fs/2) when nfft is odd. For a two-sided PSD estimate, f
spans the interval [0,fs). For a DC-centered PSD estimate, f spans the
interval (-fs/2, fs/2] cycles/unit time for even length nfft and (-fs/2,
fs/2) cycles/unit time for odd length nfft .

Data Types
double

pxxc - Confidence bounds
matrix

Confidence bounds, specified as an N-by-2 matrix with real-valued
elements. The row dimension of the matrix is equal to the length of the
PSD estimate, pxx. The first column contains the lower confidence
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bound and the second column contains the upper confidence bound for
the corresponding PSD estimates in the rows of pxx. The coverage
probability of the confidence intervals is determined by the value of
the probability input.

Data Types
single | double

Definitions Periodogram

The periodogram is a nonparametric estimate of the power spectral
density (PSD) of a wide-sense stationary random process. The
periodogram is the Fourier transform of the biased estimate of the
autocorrelation sequence. For a signal, xn, sampled at fs samples per
unit time, the periodogram is defined as
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where Δt is the sampling interval. For a one-sided periodogram, the
values at all frequencies except 0 and the Nyquist, 1/2Δt, are multiplied
by 2 so that the total power is conserved.

If the frequencies are in radians/sample, the periodogram is defined as
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The frequency range in the preceding equations has variations
depending on the value of the freqrange argument. See the description
of freqrange in “Input Arguments” on page 1-770.

The integral of the true PSD, P(f), over one period, 1/Δt for cyclical
frequency and 2π for normalized frequency, is equal to the variance of
the wide-sense stationary random process.
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For normalized frequencies, replace the limits of integration
appropriately.

Modified Periodogram

The modified periodogram multiplies the input time series by a window
function. A suitable window function is nonnegative and decays to
zero at the beginning and end points. Multiplying the time series by
the window function tapers the data gradually on and off and helps to
alleviate the leakage in the periodogram. See “Bias and Variability in
the Periodogram” for an example.

If hn is a window function, the modified periodogram is defined by
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where Δt is the sampling interval.

If the frequencies are in radians/sample, the modified periodogram
is defined as
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The frequency range in the preceding equations has variations
depending on the value of the freqrange argument. See the description
of freqrange in “Input Arguments” on page 1-770.

Examples Periodogram Using Default Inputs

Obtain the periodogram of an input signal consisting of a discrete-time
sinusoid with an angular frequency of π/4 radians/sample with additive
N(0,1) white noise.
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Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the periodogram using the default rectangular window and DFT
length. The DFT length is the next power of two greater than the signal
length, or 512 points. Because the signal is real-valued and has even
length, the periodogram is one-sided and there are 512/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pxx = periodogram(x);
plot(10*log10(pxx))

Modified Periodogram with Hamming Window

Obtain the modified periodogram of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the modified periodogram using a Hamming window and default
DFT length. The DFT length is the next power of two greater than the
signal length, or 512 points. Because the signal is real-valued and has
even length, the periodogram is one-sided and there are 512/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pxx = periodogram(x,hamming(length(x)));
plot(10*log10(pxx))

DFT Length Equal to Signal Length

Obtain the periodogram of an input signal consisting of a discrete-time
sinusoid with an angular frequency of π/4 radians/sample with additive
N(0,1) white noise. Use a DFT length equal to the signal length.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the periodogram using the default rectangular window and DFT
length equal to the signal length. Because the signal is real-valued,
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the one-sided periodogram is returned by default with a length equal
to 320/2+1.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
nfft = length(x);
pxx = periodogram(x,[],nfft);
plot(10*log10(pxx))

Periodogram of Relative Sunspot Numbers

Obtain the periodogram of the Wolf (relative sunspot) number data
sampled yearly between 1700 and 1987.

Load the relative sunspot number data. Obtain the periodogram using
the default rectangular window and number of DFT points (512 in this
example). The sampling rate for these data is 1 sample/year. Plot the
periodogram.

load sunspot.dat
relNums=sunspot(:,2);
[pxx,f] = periodogram(relNums,[],[],1);
plot(f,10*log10(pxx))
xlabel('Cycles/Year'); ylabel('dB');
title('Periodogram of Relative Sunspot Number Data');
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You see in the preceding figure that there is a peak in the periodogram
at approximately 0.1 cycles/year, which indicates a period of
approximately 10 years.

Periodogram Using Goertzel’s Algorithm — Normalized
Frequency

Obtain the periodogram of an input signal consisting of two
discrete-time sinusoids with an angular frequencies of π/4 and
π/2 radians/sample in additive N(0,1) white noise. Use Goertzel’s
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algorithm to obtain the two-sided periodogram estimates at π/4 and π/2
radians/sample. Compare the result to the one-sided periodogram.

n = 0:319;
x = cos(pi/4*n)+0.5*sin(pi/2*n)+randn(size(n));
[pxx,w] = periodogram(x,[],[pi/4 pi/2]);
pxx
[pxx1,w1] = periodogram(x);
plot(w1,pxx1)

You see that the periodogram values obtained using Goertzel’s
algorithm are 1/2 the values in the one-sided periodogram. This is
consistent with the fact that using Goertzel’s algorithm returns the
two-sided periodogram.

Periodogram Using Goertzel’s Algorithm — Frequency in Hz

Create a signal consisting of two sine waves with frequencies of 100
and 200 Hz in N(0,1) white additive noise. The sampling frequency is
1 kHz. Use Goertzel’s algorithm to obtain the two-sided periodogram
at 100 and 200 Hz.

fs = 1000;
t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+sin(2*pi*200*t)+randn(size(t));
freq = [100 200];
[pxx,f] = periodogram(x,[],freq,fs);

Upper and Lower 95%-Confidence Bounds

The following example illustrates the use of confidence bounds with
the periodogram. While not a necessary condition for statistical
significance, frequencies in the periodogram where the lower confidence
bound exceeds the upper confidence bound for surrounding PSD
estimates clearly indicate significant oscillations in the time series.

Create a signal consisting of the superposition of 100-Hz and 150-Hz
sine waves in additive white N(0,1) noise. The amplitude of the two sine
waves is 1. The sampling frequency is 1 kHz.
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t = 0:0.001:1-0.001;
fs = 1000;
x = cos(2*pi*100*t)+sin(2*pi*150*t)+randn(size(t));

Obtain the periodogram with 95%-confidence bounds. Plot the
periodogram along with the confidence interval and zoom in on the
frequency region of interest near 100 and 150 Hz.

[pxx,f,pxxc] = periodogram(x,rectwin(length(x)),length(x),fs,...
'ConfidenceLevel', 0.95);
plot(f,10*log10(pxx)); hold on;
plot(f,10*log10(pxxc),'r--','linewidth',2);
axis([85 175 min(min(10*log10(pxxc))) max(max(10*log10(pxxc)))]);
xlabel('Hz'); ylabel('dB');
title('Periodogram with 95%-Confidence Bounds');
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At 100 and 150 Hz, the lower confidence bound exceeds the upper
confidence bounds for surrounding PSD estimates.

Power Estimate of Sinusoid

Estimate the power of sinusoid at a specific frequency using the
'power' option.

Create a 100-Hz sinusoid one second in duration sampled at 1 kHz. The
amplitude of the sine wave is 1.8, which equates to a power of 1.82/2 =
1.62. Estimate the power using the 'power' option.

1-781



periodogram

fs = 1000;
t = 0:1/fs:1-1/fs;
x = 1.8*cos(2*pi*100*t);
[pxx,f] = periodogram(x,hamming(length(x)),length(x),fs,'power');
[pwrest,idx] = max(pxx);
fprintf('The maximum power occurs at %3.1f Hz\n',f(idx));
fprintf('The power estimate is %2.2f\n',pwrest);

DC-Centered Periodogram

Obtain the periodogram of a 100-Hz sine wave in additive N(0,1) noise.
The data are sampled at 1 kHz. Use the 'centered' option to obtain
the DC-centered periodogram and plot the result.

fs = 1000;
t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = periodogram(x,[],length(x),fs,'centered');
plot(f,10*log10(pxx))
xlabel('Hz'); ylabel('dB')

See Also bandpower | pcov | pburg | pmcov | pmtm | pwelch | sfdr

Related
Examples

• “Bias and Variability in the Periodogram”
• “Power Spectral Density Estimates Using FFT”

Concepts • “Nonparametric Methods”
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Purpose Phase delay of digital filter

Syntax [phi,w] = phasedelay(b,a,n)
[phi,w] = phasedelay(sos,n)
[phi,w] = phasedelay(Hd,n)
[phi,w] = phasedelay(...,n,'whole')
phi = phasedelay(...,w)
[phi,f] = phasedelay(...,n,fs)
[phi,f] = phasedelay(...,n,'whole',fs)
phi = phasedelay(...,f,fs)
[phi,w,s] = phasedelay(...)
[phi,f,s] = phasedelay(...)
phasedelay(...)

Description [phi,w] = phasedelay(b,a,n) returns the n-point phase delay
response vector phi and the n-point frequency reponse vector w (in
radians/sample) of the filter defined by numerator coefficients b and
denominator coefficients a. The phase delay response is evaluated at n
equally spaced points around the upper half of the unit circle. If n is
omitted, it defaults to 512.

[phi,w] = phasedelay(sos,n) returns the n-point phase delay
response for the second order sections matrix, sos. sos is a K-by-6
matrix, where the number of sections, K, must be greater than or equal
to 2. If the number of sections is less than 2, phasedelay considers the
input to be the numerator vector, b. Each row of sos corresponds to the
coefficients of a second order (biquad) filter. The i-th row of the sos
matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

[phi,w] = phasedelay(Hd,n) returns the n-point phase delay
response for the dfilt filter object, Hd, or the array of dfilt filter
objects. If Hd is an array of dfilt objects, each column of phi is the step
response of the corresponding dfilt object.

[phi,w] = phasedelay(...,n,'whole') uses n equally spaced points
around the whole unit circle.
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phi = phasedelay(...,w) returns the phase delay response at
frequencies specified in vector w (in radians/sample). The frequencies
are normally between 0 and π.w must contain at least two elements.

[phi,f] = phasedelay(...,n,fs) and [phi,f] =
phasedelay(...,n,'whole',fs) return the phase delay
vector f (in Hz), using the sampling frequency fs (in Hz). f must
contain at least two elements.

phi = phasedelay(...,f,fs) returns the phase delay response at the
frequencies specified in vector f (in Hz), using the sampling frequency
fs (in Hz)..

[phi,w,s] = phasedelay(...) and [phi,f,s] = phasedelay(...)
return plotting information, where s is a structure with fields you can
change to display different frequency response plots.

phasedelay(...) with no output arguments plots the phase delay
response of the filter. If you input the filter coefficients or second order
sections matrix, the current figure window is used. If you input a dfilt
object or array of filter objects, fvtool is used to plot the phase delay
response.

Note If the input to phasedelay is single precision, the phase delay
response is calculated using single-precision arithmetic. The output,
phi, is single precision.

Examples Example 1

Plot the phase delay response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
phasedelay(b)
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Example 2

Plot the phase delay response of an elliptic filter:

[b,a] = ellip(10,.5,20,.4);
phasedelay(b,a,512,'whole')
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See Also freqz | fvtool | phasez | grpdelay
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Purpose Phase response of digital filter

Syntax [phi,w] = phasez(b,a,n)
[phi,w] = phasez(sos,n)
[phi,w]=phasez(Hd,n)
[phi,w] = phasez(...,n,'whole')
phi = phasez(...,w)
[phi,f] = phasez(...,n,fs)
phi = phasez(...f,fs)
[phi,w,s] = phasez(...)
phasez(...)

Description [phi,w] = phasez(b,a,n) returns the n-point unwrapped phase
response vector, phi, in radians and frequency vector, w, in
radians/sample for the filter coefficients specified in b and a. The values
of the frequency vector, w, range from 0 to pi. If n is omitted, the length
of the phase response vector defaults to 512.

[phi,w] = phasez(sos,n) returns the unwrapped phase response for
the second order sections matrix, sos. sos is a K-by-6 matrix, where
the number of sections, K, must be greater than or equal to 2. If the
number of sections is less than 2, phasez considers the input to be the
numerator vector, b. Each row of sos corresponds to the coefficients of a
second order (biquad) filter. The i-th row of the sos matrix corresponds
to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

[phi,w]=phasez(Hd,n) returns the unwrapped phase response for the
dfilt filter object, Hd, or the array of dfilt filter objects. If Hd is an
array of dfilt objects, each column of phi is the group delay of the
corresponding dfilt object. If n is unspecified for discrete-time filter
objects, the length of the phase response vector defaults to 8192.

[phi,w] = phasez(...,n,'whole') returns frequency and unwrapped
phase response vectors evaluated at n equally-spaced points around the
unit circle from 0 to 2*pi radians/sample.

phi = phasez(...,w) returns the unwrapped phase response in
radians at frequencies specified in w (radians/sample). The frequencies
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are normally between 0 and pi.The vector w must have at least two
elements.

[phi,f] = phasez(...,n,fs) return the unwrapped phase vector phi
in radians and the frequency vector in Hz. The frequency vector ranges
from 0 to the Nyquist frequency, fs/2. If the 'whole' option is used,
the frequency vector ranges from 0 to the sampling frequency.

phi = phasez(...f,fs) return the phase response in radians at
the frequencies specified in the vector f (in Hz) using the sampling
frequency fs (in Hz). The vector f must have at least two elements.

[phi,w,s] = phasez(...) return plotting information, where s is a
structure array with fields you can change to display different frequency
response plots.

phasez(...) with no output arguments plots the phase response of the
filter. If you input the filter coefficients or second order sections matrix,
the current figure window is used. If you input a discrete-time filter
object or array of filter objects, fvtool is used to plot the phase response.

Note If the input to phasez is single precision, the phase response is
calculated using single-precision arithmetic. The output, phi, is single
precision.

Examples Example 1

Plot the phase response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
phasez(b)
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Example 2

In the next example, we design an equiripple lowpass default filter
object and display the result:

d=fdesign.lowpass;
Hd=design(d,'equiripple');
phasez(Hd)
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Example 3

Plot the phase response of an elliptic filter:

d=fdesign.lowpass('Fp,Fst,Ap,Ast',0.4,0.5,1,60);
Hd=design(d,'ellip');
phasez(Hd)
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See Also freqz | fvtool | phasedelay | grpdelay
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Purpose PSD using modified covariance method

Syntax Pxx = pmcov(x,order)
Pxx = pmcov(x,order,nfft)
[Pxx,w] = pmcov(...)
[Pxx,w] = pmcov(x,order,w)
Pxx = pmcov(x,order,nfft,fs)
Pxx = pmcov(x,order,f,fs)
[Pxx,f] = pmcov(x,order,nfft,fs)
[Pxx,f] = pmcov(x,order,f,fs)
[Pxx,f] = pmcov(x,order,nfft,fs,freqrange)
[Pxx,w] = pmcov(x,order,nfft,freqrange)
[Pxx,f,Pxxc] = pmcov(...,'ConfidenceLevel',P)
pmcov(...)

Description Pxx = pmcov(x,order) implements the modified covariance algorithm,
a parametric spectral estimation method, and returns Pxx, an estimate
of the power spectral density (PSD) of the vector x. The entries of x
represent samples of a discrete-time signal, and order is the integer
specifying the order of an autoregressive (AR) prediction model for the
signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians
per sample. Real-valued inputs produce full power one-sided (in
frequency) PSDs (by default), while complex-valued inputs produce
two-sided PSDs.

In general, the length of the FFT and the values of the input x
determine the length of Pxx and the range of the corresponding
normalized frequencies. For this syntax, the (default) FFT length is
256. The following table indicates the length of Pxx and the range of the
corresponding normalized frequencies for this syntax.
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PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data Length of Pxx

Range of the
Corresponding Normalized
Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

Pxx = pmcov(x,order,nfft) uses the integer FFT length nfft to
calculate the PSD vector Pxx.

[Pxx,w] = pmcov(...) also returns w, a vector of normalized angular
frequencies at which the two-sided PSD is estimated. Pxx and w have
the same length. The units for w are rad/sample.

The length of Pxx and the frequency range for w depend on nfft and the
values of the input x. The following table indicates the length of Pxx
and the frequency range for w in this syntax.

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

[Pxx,w] = pmcov(x,order,w) uses a vector of normalized frequencies
w with two or more elements to compute the PSD at those frequencies
and returns a two-sided PSD.

Pxx = pmcov(x,order,nfft,fs)

or

Pxx = pmcov(x,order,f,fs) uses the integer FFT length nfft to
calculate the PSD vector Pxx or uses the vector of frequencies f in Hz
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and the sampling frequency fs to compute the two-sided PSD vector
Pxx at those frequencies. If you specify nfft as the empty vector [], it
uses the default value of 256. If you specify fs as the empty vector
[], the sampling frequency fs defaults to 1 Hz. The spectral density
produced is calculated in units of power per Hz.

[Pxx,f] = pmcov(x,order,nfft,fs)

or

[Pxx,f] = pmcov(x,order,f,fs) returns the frequency vector f. In
this case, the units for the frequency vector are in Hz. The frequency
range for f depends on nfft, fs, and the values of the input x. The
length of Pxx is the same as in the table above. The following table
indicates the frequency range for f for this syntax.

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex
Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

[Pxx,f] = pmcov(x,order,nfft,fs,freqrange) or

[Pxx,w] = pmcov(x,order,nfft,freqrange) specifies the range of
frequency values to include in the output frequency vectors, f or w. This
syntax is useful when x is real. freqrange can be either:

• 'onesided' — returns the one-sided PSD of a real input signal, x.
If nfft is even, Pxx has length nfft/2+1 and is computed over the
interval [0,π]. If nfft is odd, the length of Pxx is (nfft+1)/2 and the
frequency interval is [0,π). When your specify fs , the intervals are
[0,fs/2] and [0,fs/2) for even and odd length nfft respectively.

• 'twosided'— returns the two-sided PSD for either real or complex
input, x. In this case, Pxx has length nfft and is computed over the
interval [0,2π). When you specify fs, the frequency interval is [0,fs).
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• 'centered'— returns the centered two-sided PSD for either real or
complex input, x. In this case, Pxx has length nfft and is computed
over the interval (-π, π] for even length nfft and (-π, π) for odd length
nfft. When you specify fs, the frequency intervals are (-fs/2, fs/2]
and (-fs/2,fs/2) for even and odd length nfft respectively.

[Pxx,f,Pxxc] = pmcov(...,'ConfidenceLevel',P) returns the
P100% confidence interval for Pxx, where P is a nonnegative scalar
between 0 and 1. The default value for P is 0.95. Large-sample
confidence intervals are computed using a Gaussian probability density
function. Pxxc is N-by-2 matrix, where N is the length of Pxx. The first
column, Pxxc(:,1), is the lower bound of the confidence interval. The
second column, Pxxc(:,2), is the upper bound. See [1] for a description
of approximate large-sample confidence intervals for AR PSD estimates.

pmcov(...) with no outputs plots the PSD in the current figure
window. The frequency range on the plot is the same as the range of
output w (or f) for a given set of parameters.

Tips The power spectral density is computed as the distribution of power
per unit frequency.

This algorithm depends on your selecting an appropriate model order
for your signal.

Examples Modified Covariance AR PSD Estimate

Because the modified covariance method estimates the spectral density
by fitting an AR prediction model of a given order to the signal, first
generate a signal from an AR (all-pole) model of a given order. You can
use freqz to check the magnitude of the frequency response of your AR
filter. This will give you an idea of what to expect when you estimate
the PSD using pmcov:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients

freqz(1,a) % AR filter frequency response

title('AR System Frequency Response')

1-795



pmcov

Now generate the input signal x by filtering white noise through the
AR filter. Estimate the PSD of x based on a fourth-order AR prediction
model since in this case we know that the original AR system model a
has order 4:

x = filter(1,a,randn(256,1)); % AR filter output
pmcov(x,4) % Fourth-order estimate

Large-Sample Confidence Intervals for AR PSD Estimate

This example shows you how to obtain and plot confidence intervals
for an AR PSD estimate.

Create the coefficients for an AR(4) system function. Use freqz to
obtain and plot the true power spectral density.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
plot(F,20*log10(abs(H)),'b','linewidth',2);
xlabel('Hz'); ylabel('dB/Hz');
title('True Power Spectral Density of AR(4) System Function')
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sCreate a realization of the AR(4) process represented by the
coefficients. Set the random number generator to the default settings for
reproducible results. Obtain approximate large-sample 99%-confidence
intervals for the PSD estimate.

rng default;
x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F,Pxxc] = pmcov(y,4,1024,1,'ConfidenceLevel',0.99);
plot(F,10*log10(Pxx),'b'); hold on;
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plot(F,10*log10(Pxxc),'r'); xlabel('Hz'); ylabel('dB/Hz');
legend('PSD Estimate', '99%-Confidence Intervals')
title('PSD Estimate with 99%-Confidence Intervals')

Algorithms Linear prediction filters can be used to model the second-order
statistical characteristics of a signal. The prediction filter output can be
used to model the signal when the input is white noise.

pmcov estimates the PSD of the signal vector using the modified
covariance method. This method fits an autoregressive (AR) linear
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prediction filter model to the signal by simultaneously minimizing the
forward and backward prediction errors (based on causal observations
of your input signal) in the least squares sense. The spectral estimate
returned by pmcov is the magnitude squared frequency response of
this AR model.

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988, pp. 194–195.

[2] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1987, Chapter 7.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997.

See Also armcov | lpc | pburg | pcov | peig | periodogram | pmtm | pmusic |
pwelch | prony | pmcov
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Purpose Multitaper power spectral density estimate

Syntax pxx = pmtm(x)
pxx = pmtm(x,nw)
pxx = pmtm(x,nw,nfft)

[pxx,w] = pmtm( ___ )
[pxx,f] = pmtm( ___ ,fs)

[pxx,w] = pmtm(x,nw,w)
[pxx,f] = pmtm(x,nw,f,fs)

[ ___ ] = pmtm( ___ ,method)

[ ___ ] = pmtm(x,e,v)
[ ___ ] = pmtm(x,dpss_params)

[ ___ ] = pmtm( ___ ,'DropLastTaper',dropflag)
[ ___ ] = pmtm( ___ ,freqrange)
[pxx,f,pxxc] = pmtm( ___ ,'ConfidenceLevel',probability)

pmtm( ___ )

Description pxx = pmtm(x) returns Thomson’s multitaper power spectral density
(PSD) estimate of the input signal, x. The tapers are the discrete prolate
spheroidal (DPSS), or Slepian, sequences. The time-halfbandwidth, nw,
product is 4. By default, pmtm uses the first 2nw–1 DPSS sequences. If x
is real-valued, pxx is a one-sided PSD estimate. If x is complex-valued,
pxx is a two-sided PSD estimate. The number of points, nfft, in the
discrete Fourier transform (DFT) is the maximum of 256 or the next
power of two greater than the signal length.

pxx = pmtm(x,nw) use the time-halfbandwidth product, nw, to obtain
the multitaper PSD estimate. The time-halfbandwidth product controls
the frequency resolution of the multitaper estimate. pmtm uses 2nw-1
Slepian tapers in the PSD estimate.
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pxx = pmtm(x,nw,nfft) uses nfft points in the DFT. If nfft is
greater than the signal length, x is zero-padded to length nfft. If nfft
is less than the signal length, the signal is wrapped modulo nfft .

[pxx,w] = pmtm( ___ ) returns the normalized frequency vector, w. If
pxx is a one-sided PSD estimate, w spans the interval [0,π] if nfft is
even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate, w
spans the interval [0,2π).

[pxx,f] = pmtm( ___ ,fs) returns a frequency vector, f, in cycles per
unit time. The sampling frequency, fs, is the number of samples per
unit time. If the unit of time is seconds, then f is in cycles/sec (Hz). For
real–valued signals, f spans the interval [0,fs/2] when nfft is even
and [0,fs/2) when nfft is odd. For complex-valued signals, f spans
the interval [0,fs).

[pxx,w] = pmtm(x,nw,w) returns the two-sided multitaper PSD
estimates at the normalized frequencies specified in the vector, w. The
vector, w, must contain at least 2 elements.

[pxx,f] = pmtm(x,nw,f,fs) returns the two-sided multitaper PSD
estimates at the frequencies specified in the vector, f. The vector, f,
must contain at least 2 elements. The frequencies in f are in cycles per
unit time. The sampling frequency, fs, is the number of samples per
unit time. If the unit of time is seconds, then f is in cycles/sec (Hz).

[ ___ ] = pmtm( ___ ,method) combines the individual tapered PSD
estimates using the method, method. method can be one of: 'adapt'
(default), 'eigen', or 'unity'.

[ ___ ] = pmtm(x,e,v) uses the tapers in the N-by-K matrix e with
concentrations v in the frequency band [-w,w]. N is the length of the
input signal, x. Use dpss to obtain the Slepian tapers and corresponding
concentrations.
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[ ___ ] = pmtm(x,dpss_params) uses the cell array, dpss_params, to
pass input arguments to dpss except the number of elements in the
sequences. The number of elements in the sequences is the first input
argument to dpss and is not included in dpss_params. For example

x = randn(1000,1);
pxx = pmtm(x,{2.5,3});

[ ___ ] = pmtm( ___ ,'DropLastTaper',dropflag) specifies whether
pmtm drops the last taper in the computation of the multitaper PSD
estimate. dropflag is a logical. The default value of dropflag is true
and the last taper is not used in the PSD estimate.

[ ___ ] = pmtm( ___ ,freqrange) returns the multitaper PSD estimate
over the frequency range specified by freqrange. Valid options for
freqrange are

: 'onesided', 'twosided', or 'centered'.

[pxx,f,pxxc] = pmtm( ___ ,'ConfidenceLevel',probability)
returns the probabilityx100% confidence intervals for the PSD
estimate in pxxc.

pmtm( ___ ) with no output arguments plots the multitaper PSD
estimate in the current figure window.

Input
Arguments

x - Input signal
vector

Input signal, specified as a row or column vector.

Data Types
single | double
Complex Number Support: Yes

nw - Time-halfbandwidth product
4 (default) | positive scalar
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Time-halfbandwidth product, specified as a positive scalar. In
multitaper spectral estimation, the user specifies the resolution
bandwidth of the multitaper estimate [-W,W] where W=j/NΔt for some
small j>1. Equivalently, W is some small multiple of the frequency
resolution of the DFT. The time-halfbandwidth product is the product of
the resolution halfbandwidth and the number of samples in the input
signal, N. The number of Slepian tapers whose Fourier transforms are
well-concentrated in [-W,W] (eigenvalues close to unity) is 2NW-1.

nfft - Number of DFT points
max(256,2^nextpow2(length(x)) (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued
input signal, x, the PSD estimate, pxx has length (nfft/2+1) if nfft
is even, and (nfft+1)/2 if nfft is odd. For a complex-valued input
signal,x, the PSD estimate always has length nfft. If nfft is specified
as empty, the default nfft is used.

Data Types
single | double

fs - Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar. The sampling
frequency is the number of samples per unit time. If the unit of time is
seconds, the sampling frequency has the units hertz.

w - Normalized frequencies for Goertzel algorithm
vector

Normalized frequencies for Goertzel algorithm, specified as a row or
column vector with at least 2 elements. Normalized frequencies are
in radians/sample.

Example: w = [pi/4 pi/2]

Data Types
double
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f - Cyclical frequencies for Goertzel algorithm
vector

Cyclical frequencies for Goertzel algorithm, specified as a row or column
vector with at least 2 elements. The frequencies are in cycles per unit
time. The unit time is specified by the sampling frequency, fs. If fs
has units of samples/second, then f has units of Hz.

Example: fs = 1000; f= [100 200]

Data Types
double

method - Weights on individual tapered PSD estimates
'adapt' (default) | 'eigen' | 'unity'

Weights on individual tapered PSD estimates, specified as one of
'adapt', 'eigen', or 'unity'. The default is Thomson’s adaptive
frequency-dependent weights, 'adapt'. The calculation of these
weights is detailed on pp. 368–370 in [1]. The 'eigen' method weights
each tapered PSD estimate by the eigenvalue (frequency concentration)
of the corresponding Slepian taper. The 'unity' method weights each
tapered PSD estimate equally.

e - DPSS (Slepian) sequences
matrix

DPSS (Slepian) sequences, specified as a N-by-K matrix where N is the
length of the input signal, x. The matrix e is the output of dpss.

v - Eigenvalues for DPSS (Slepian) sequences
vector

Eigenvalues for DPSS (Slepian) sequences, specified as a column vector.
The eigenvalues for the DPSS sequences indicate the proportion of the
sequence energy concentrated in the resolution bandwidth, [-W,W]. The
eigenvalues range lie in the interval (0,1) and generally the first 2NW-1
eigenvalues are close to 1 and then decrease toward 0.

dpss_params - Input arguments for dpss
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cell array

Input arguments for dpss, specified as a cell array. The first input
argument to dpss is the length of the DPSS sequences and is omitted
from dpss_params. The length of the DPSS sequences is obtained from
the length of the input signal, x.

Example: {3.5,5}

dropflag - Flag indicating whether to drop or keep the last DPSS
sequence
true (default) | false

Flag indicating whether to drop or keep the last DPSS sequence,
specified as a logical. The default is true and pmtm drops the last
taper. In a multitaper estimate, the first 2NW-1 DPSS sequences have
eigenvalues close to unity. If you use less than 2NW-1 sequences, it is
likely that all the tapers have eigenvalues close to 1 and you can specify
dropflag as false to keep the last taper.

freqrange - Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided',
'twosided', or 'centered'. The default is 'onesided' for real-valued
signals and 'twosided' for complex-valued signals. The frequency
ranges corresponding to each option are

• 'onesided'— returns the one-sided PSD estimate of a real-valued
input signal, x. If nfft is even, pxx will have length nfft/2+1 and is
computed over the interval [0,π] radians/sample. If nfft is odd, the
length of pxx is (nfft+1)/2 and the interval is [0,π) radians/sample.
When fs is optionally specified, the corresponding intervals are
[0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time for even and
odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the
real-valued or complex-valued input, x. In this case, pxx has length
nfft and is computed over the interval [0,2π) radians/sample. When
fs is optionally specified, the interval is [0,fs) cycles/unit time.
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• 'centered' — returns the centered two-sided PSD estimate for
either the real-valued or complex-valued input, x. In this case,
pxx has length nfft and is computed over the interval (-π,π]
radians/sample for even length nfft and (-π,π) radians/sample for
odd length nfft. When fs is optionally specified, the corresponding
intervals are (-fs/2, fs/2] cycles/unit time and (-fs/2, fs/2)
cycles/unit time for even and odd length nfft respectively.

Data Types
char

probability - Confidence interval for PSD estimate
0.95 (default) | Scalar in the range (0,1)

Coverage probability for the true PSD, specified as a scalar in the range
(0,1). The output, pxxc, contains the lower and upper bounds of the
probabilityx100% interval estimate for the true PSD.

Output
Arguments

pxx - PSD estimate
vector

PSD estimate, specified as a real-valued, nonnegative column vector.

Data Types
single | double

w - Normalized frequencies
vector

Normalized frequencies, specified as a real-valued column vector. If pxx
is a one-sided PSD estimate, w spans the interval [0,π] if nfft is even
and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate, w spans the
interval [0,2π). For a DC-centered PSD estimate, f spans the interval
(-π,π] radians/sample for even length nfft and (-π,π) radians/sample
for odd length nfft.

Data Types
double

f - Cyclical frequencies
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vector

Cyclical frequencies, specified as a real-valued column vector. For a
one-sided PSD estimate, f spans the interval [0,fs/2] when nfft is
even and [0,fs/2) when nfft is odd. For a two-sided PSD estimate, f
spans the interval [0,fs). For a DC-centered PSD estimate, f spans the
interval (-fs/2, fs/2] cycles/unit time for even length nfft and (-fs/2,
fs/2) cycles/unit time for odd length nfft .

Data Types
double

pxxc - Confidence bounds
matrix

Confidence bounds, specified as an N-by-2 matrix with real-valued
elements. The row dimension of the matrix is equal to the length of the
PSD estimate, pxx. The first column contains the lower confidence
bound and the second column contains the upper confidence bound for
the corresponding PSD estimates in the rows of pxx. The coverage
probability of the confidence intervals is determined by the value of
the probability input.

Data Types
single | double

Examples Multitaper Estimate Using Default Inputs

Obtain the multitaper PSD estimate of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in
length. Obtain the multitaper PSD estimate using the default
time-halfbandwidth product of 4 and DFT length. The default number
of DFT points is 512. Because the signal is real-valued, the PSD
estimate is one-sided and there are 512/2+1 points in the PSD estimate.

n = 0:319;
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x = cos(pi/4*n)+randn(size(n));
pxx = pmtm(x);
plot(10*log10(pxx))

Specify Time-Halfbandwidth Product

Obtain themultitaper PSD estimate with a specified time-halfbandwidth
product.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the multitaper PSD estimate with a time–halfbandwidth
product of 2.5. The resolution bandwidth is [-2.5π/320,2.5π/320]
radians/sample. The default number of DFT points is 512. Because
the signal is real-valued, the PSD estimate is one-sided and there are
512/2+1 points in the PSD estimate.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pxx = pmtm(x,2.5);
plot(10*log10(pxx))

DFT Length Equal to Signal Length

Obtain the multitaper PSD estimate of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. Use a DFT length equal to the signal
length.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the multitaper PSD estimate with a time-halfbandwidth product
of 3 and a DFT length equal to the signal length. Because the signal
is real-valued, the one-sided PSD estimate is returned by default with
a length equal to 320/2+1.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pxx = pmtm(x,3,length(x));
plot(10*log10(pxx))
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Multitaper Estimate with Sampling Frequency

Obtain the multitaper PSD estimate of a signal sampled at 1 kHz. The
signal is a 100-Hz sine wave in additive N(0,1) white noise. The signal
duration is 2 seconds. Use a time-halfbandwidth product of 3 and DFT
length equal to the signal length.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = pmtm(x,3,length(x),fs);
plot(f,10*log10(pxx))

Average Single-Taper Estimates with Unity Weights

Obtain a multitaper PSD estimate where the individual tapered direct
spectral estimates are given equal weight in the average.

Obtain the multitaper PSD estimate of a signal sampled at 1 kHz.
The signal is a 100-Hz sine wave in additive N(0,1) white noise. The
signal duration is 2 seconds. Use a time-halfbandwidth product of 3 and
DFT length equal to the signal length. Use the 'unity' option to give
equal weight in the average to each of the individual tapered direct
spectral estimates.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = pmtm(x,3,length(x),fs,'unity');
plot(f,10*log10(pxx))

DPSS Sequences and Their Frequency-Domain Concentrations

This example examines the frequency-domain concentrations of the
DPSS sequences. The example produces a multitaper PSD estimate of
an input signal by precomputing the Slepian sequences and selecting
only those with more than 99% of their energy concentrated in the
resolution bandwidth.
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The signal is a 100-Hz sine wave in additive N(0,1) white noise. The
signal duration is 2 seconds.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));

Set the time-halfbandwidth product to 3.5. For the signal length of
2000 samples and a sampling interval of 0.001 seconds, this results in a
resolution bandwidth of [-1.75,1.75] Hz. Calculate the first 10 Slepian
sequences and examine their frequency concentrations in the specified
resolution bandwidth. Determine the number of Slepian sequences with
energy concentrations greater than 90%.

[e,v] = dpss(length(x),3.5,10);
stem(1:length(v),v,'markerfacecolor',[0 0 1]); set(gca,'ylim',[0 1.2])
title('Energy Concentrations in [-w,w] of k-th Slepian Sequence');
xlabel('k-th sequence'); ylabel('Proportion of Energy in [-w,w]');
h = line(1:length(v),0.990*ones(length(v),1));
set(h,'color','r','linewidth',2)
idx = find(v>0.99,1,'last');

Using the selected DPSS sequences, obtain the multitaper PSD
estimate. Set 'DropLastTaper' to false to use all the selected tapers.

[pxx,f] = pmtm(x,e(:,1:idx),v(1:idx),length(x),fs,'DropLastTaper',false);
plot(f,10*log10(pxx))

DC-Centered Multitaper PSD Estimate

Obtain the multitaper PSD estimate of a 100-Hz sine wave in additive
N(0,1) noise. The data are sampled at 1 kHz. Use the 'centered'
option to obtain the DC-centered PSD and plot the result.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = pmtm(x,3.5,length(x),fs,'centered');
plot(f,10*log10(pxx))
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xlabel('Hz'); ylabel('dB')

Upper and Lower 95%-Confidence Bounds

The following example illustrates the use of confidence bounds with
the multitaper PSD estimate. While not a necessary condition for
statistical significance, frequencies in the multitaper PSD estimate
where the lower confidence bound exceeds the upper confidence bound
for surrounding PSD estimates clearly indicate significant oscillations
in the time series.

Create a signal consisting of the superposition of 100-Hz and 150-Hz
sine waves in additive white N(0,1) noise. The amplitude of the two sine
waves is 1. The sampling frequency is 1 kHz. The signal is 2 seconds
in duration.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+cos(2*pi*150*t)+randn(size(t));

Obtain the multitaper PSD estimate with 95%-confidence bounds. Plot
the PSD estimate along with the confidence interval and zoom in on the
frequency region of interest near 100 and 150 Hz.

[pxx,f,pxxc] = pmtm(x,3.5,length(x),fs,...
'ConfidenceLevel', 0.95);
plot(f,10*log10(pxx)); hold on;
plot(f,10*log10(pxxc),'r--','linewidth',2);
axis([85 175 min(min(10*log10(pxxc))) max(max(10*log10(pxxc)))]);
xlabel('Hz'); ylabel('dB');
title('Multitaper PSD Estimate with 95%-Confidence Bounds');

At 100 and 150 Hz, the lower confidence bound exceeds the upper
confidence bounds for surrounding PSD estimates.

Definitions Discrete Prolate Spheroidal (Slepian) Sequences

The derivation of the Slepian sequences proceeds from the discrete-time
— continuous frequency concentration problem. For all ℓ2 sequences
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index-limited to 0,1,...,N-1, the problem seeks the sequence having the
maximal concentration of its energy in a frequency band [-W,W] with
|W| < 1/2Δt.

This amounts to finding the eigenvalues and corresponding eigenvectors
of an N-by-N self-adjoint positive semi-definite operator. Therefore, the
eigenvalues are real and nonnegative and eigenvectors corresponding
to distinct eigenvalues are mutually orthogonal. In this particular
problem, the eigenvalues are bounded by 1 and the eigenvalue is
the measure of the sequence’s energy concentration in the frequency
interval [-W,W].

The eigenvalue problem is given by
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The 0-th order DPSS sequence, g0 is the eigenvector corresponding
to the largest eigenvalue. The 1-st order DPSS sequence, g1 is the
eigenvector corresponding to the next largest eigenvalue and is
orthogonal to the 0-th order sequence. The 2-nd order DPSS sequence,
g2, is the eigenvector corresponding to the third largest eigenvalue
and is orthogonal to the 0-th order and 1-st order DPSS sequences.
Because the operator is N-by-N, there are N eigenvectors. However,
it can be shown that for a given sequence length N and a specified
bandwidth [-W,W], there are approximately 2NW–1 DPSS sequences
with eigenvalues very close to unity.

Multitaper Spectral Estimation

The periodogram is not a consistent estimator of the true power
spectral density of a wide-sense stationary process. To produce a
consisten estimate of the PSD, the multitaper method averages
modified periodograms obtained using a family of mutually orthogonal
tapers (windows). In addition to mutual orthogonality, the tapers
also have optimal time-frequency concentration properties. Both the
orthogonality and time-frequency concentration of the tapers is critical
to the success of the multitaper technique. See “Discrete Prolate
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Spheroidal (Slepian) Sequences” on page 1-811 for a brief description of
the Slepian sequences used in Thomson’s multitaper method.

The multitaper method uses K modified periodograms with each one
obtained using a different Slepian sequence as the window. Let
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denote the modified periodogram obtained with the k-th Slepian
sequence, gk,n.

In the simplest form, the multitaper method simply averages the K
modified periodograms to produce the multitaper PSD estimate.
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Note the difference between the multitaper PSD estimate and Welch’s
method. Both methods reduce the variability in the periodogram
by averaging over approximately uncorrelated estimates of the
PSD. However, the two approaches differ in how they produce these
uncorrelated PSD estimates. The multitaper method uses the entire
signal in each modified periodogram. The orthogonality of the Slepian
tapers decorrelates the different modified periodograms. Welch’s
overlapped segment averaging approach uses segments of the signal
in each modified periodogram and the segmenting decorrelates the
different modified periodograms.

The preceding equation corresponds to the 'unity' option in pmtm.
However, as explained in “Discrete Prolate Spheroidal (Slepian)
Sequences” on page 1-811, the Slepian sequences do not possess equal
energy concentration in the frequency band of interest. The higher the
order of the Slepian sequence, the less concentrated the sequence energy
is in the band [-W,W] with the concentration given by the eigenvalue.
Consequently, it can be beneficial to use the eigenvalues to weight the
K modified periodograms prior to averaging. This corresponds to the
'eigen' option in pmtm.
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Using the sequence eigenvalues to produce a weighted average of
modified periodograms accounts for the frequency concentration
properties of the Slepian sequences. However, it does not account for the
interaction between the power spectral density of the random process
and the frequency concentration of the Slepian sequences. Specifically,
frequency regions where the random process has little power are less
reliably estimated in the modified periodograms using higher order
Slepian sequences. This argues for an frequency-dependent adaptive
process, which accounts not only for the frequency concentration of the
Slepian sequence, but also for the power distribution in the time series.
This adaptive weighting corresponds to the 'adapt' option in pmtm and
is the default for computing the multitaper estimate.

References
[1] Percival, D.B., and A.T. Walden, Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques,
Cambridge University Press, 1993.

[2] Thomson, D.J., “Spectrum estimation and harmonic analysis,”
Proceedings of the IEEE, Vol. 70 (1982), pp. 1055-1096.

See Also dpss | periodogram | pwelch
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Purpose Pseudospectrum using MUSIC algorithm

Syntax [S,w] = pmusic(x,p)
[S,w] = pmusic(x,p,w)
[S,w] = pmusic(...,nfft)
[S,f] = pmusic(x,p,nfft,fs)
[S,f] = pmusic(x,p,f,fs)
[S,f] = pmusic(...,'corr')
[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap)
[...] = pmusic(...,freqrange)
[...,v,e] = pmusic(...)
pmusic(...)

Description [S,w] = pmusic(x,p) implements the MUSIC (Multiple Signal
Classification) algorithm and returns S, the pseudospectrum estimate
of the input signal x, and a vector w of normalized frequencies
(in rad/sample) at which the pseudospectrum is evaluated. The
pseudospectrum is calculated using estimates of the eigenvectors of a
correlation matrix associated with the input data x, where x is specified
as either:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of
an array of sensors, as in array processing), such that x'*x is an
estimate of the correlation matrix

Note You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of
p, represents a threshold that is multiplied by λmin, the smallest
estimated eigenvalue of the signal’s correlation matrix. Eigenvalues
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below the threshold λmin*p(2) are assigned to the noise subspace.
In this case, p(1) specifies the maximum dimension of the signal
subspace.

Note If the inputs to pmusic are real sinusoids, set the value of p to
double the number of input signals. If the inputs are complex sinusoids,
set p equal to the number of inputs.

The extra threshold parameter in the second entry in p provides you
more flexibility and control in assigning the noise and signal subspaces.

S and w have the same length. In general, the length of the FFT and the
values of the input x determine the length of the computed S and the
range of the corresponding normalized frequencies. The following table
indicates the length of S (and w) and the range of the corresponding
normalized frequencies for this syntax.

S Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

Length of S
and w

Range of the
Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

[S,w] = pmusic(x,p,w) returns the pseudospectrum in the vector S
computed at the normalized frequencies specified in vector w, which
has two or more elements

[S,w] = pmusic(...,nfft) specifies the integer length of the FFT
nfft used to estimate the pseudospectrum. The default value for nfft
(entered as an empty vector []) is 256.

The following table indicates the length of S and w, and the frequency
range for w in this syntax.
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S and Frequency Vector Characteristics

Real/Complex
Input Data

nfft
Even/Odd

Length of S and
w

Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

[S,f] = pmusic(x,p,nfft,fs) returns the pseudospectrum in the
vector S evaluated at the corresponding vector of frequencies f (in Hz).
You supply the sampling frequency fs in Hz. If you specify fs with the
empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the
input x. The length of S (and f) is the same as in the S and Frequency
Vector Characteristics on page 1-817 above. The following table
indicates the frequency range for f for this syntax.

S and Frequency Vector Characteristics with fs Specified

Real/Complex
Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

[S,f] = pmusic(x,p,f,fs) returns the pseudospectrum in the vector
S computed at the frequencies specified in vector f, which has two or
more elements

[S,f] = pmusic(...,'corr') forces the input argument x to be
interpreted as a correlation matrix rather than matrix of signal data.
For this syntax x must be a square matrix, and all of its eigenvalues
must be nonnegative.
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[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap) allows you to specify
nwin, a scalar integer indicating a rectangular window length, or
a real-valued vector specifying window coefficients. Use the scalar
integer noverlap in conjunction with nwin to specify the number of
input sample points by which successive windows overlap. noverlap
is not used if x is a matrix. The default value for nwin is 2*p(1) and
noverlap is nwin-1.

With this syntax, the input data x is segmented and windowed before
the matrix used to estimate the correlation matrix eigenvalues is
formulated. The segmentation of the data depends on nwin, noverlap,
and the form of x. Comments on the resulting windowed segments are
described in the following table.

Windowed Data Depending on x and nwin

Input data x Form of nwin Windowed Data

Data vector Scalar Length is nwin

Data vector Vector of
coefficients

Length is length(nwin)

Data matrix Scalar Data is not windowed.

Data matrix Vector of
coefficients

length(nwin) must be the
same as the column length of
x, and noverlap is not used.

See the Eigenvector Length Depending on Input Data and Syntax on
page 1-820 below for related information on this syntax.

Note The arguments nwin and noverlap are ignored when you include
the string 'corr' in the syntax.

[...] = pmusic(...,freqrange) specifies the range of frequency
values to include in f or w. This syntax is useful when x is real.
freqrange can be either:
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• 'onesided' — returns the one-sided PSD of a real input signal, x.
If nfft is even, Pxx has lengthnfft/2+1 and is computed over the
interval [0,π]. If nfft is odd, the length of Pxx is (nfft+1)/2 and the
frequency interval is [0,π). When your specify fs , the intervals are
[0,fs/2) and [0,fs/2] for even and odd lengthnfftrespectively.

• 'twosided'— returns the two-sided PSD for either real or complex
input, x. In this case, Pxx has length nfft and is computed over the
interval [0,2π). When you specify fs, the frequency interval is [0,fs).

• 'centered'— returns the centered two-sided PSD for either real or
complex input, x. In this case, Pxx has length nfft and is computed
over the interval (-π, π] for even length nfft and (-π, π]) for odd
length nfft. When you specify fs, the frequency intervals are (-fs/2,
fs/2] and (-fs/2,fs/2) for even and odd length nfft respectively.

Note You can put the string arguments freqrange or 'corr'
anywhere in the input argument list after p.

[...,v,e] = pmusic(...) returns the matrix v of noise eigenvectors,
along with the associated eigenvalues in the vector e. The columns of v
span the noise subspace of dimension size(v,2). The dimension of the
signal subspace is size(v,1)-size(v,2). For this syntax, e is a vector
of estimated eigenvalues of the correlation matrix.

pmusic(...) with no output arguments plots the pseudospectrum in
the current figure window.

Tips In the process of estimating the pseudospectrum, pmusic computes
the noise and signal subspaces from the estimated eigenvectors vj and
eigenvalues λj of the signal’s correlation matrix. The smallest of these
eigenvalues is used in conjunction with the threshold parameter p(2)
to affect the dimension of the noise subspace in some cases.

The length n of the eigenvectors computed by pmusic is the sum of
the dimensions of the signal and noise subspaces. This eigenvector
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length depends on your input (signal data or correlation matrix) and
the syntax you use.

The following table summarizes the dependency of the eigenvector
length on the input argument.

Eigenvector Length Depending on Input Data and Syntax

Form of Input Data
x

Comments on the
Syntax

Length n of
Eigenvectors

Row or column vector nwin is specified as a
scalar integer.

nwin

Row or column vector nwin is specified as a
vector.

length(nwin)

Row or column vector nwin is not specified. 2*p(1)

l-by-m matrix If nwin is specified
as a scalar, it is
not used. If nwin is
specified as a vector,
length(nwin) must
equal m.

m

m-by-m nonnegative
definite matrix

The string 'corr' is
specified and nwin is
not used.

m

You should specify nwin > p(1) or length(nwin) > p(1) if you want
p(2) > 1 to have any effect.

Examples Example 1: pmusic with no Sampling Specified

This example analyzes a signal vector x, assuming that two real
sinusoidal components are present in the signal subspace. In this case,
the dimension of the signal subspace is 4 because each real sinusoid is
the sum of two complex exponentials:

n = 0:199;
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x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
pmusic(x,4) % Set p to 4 because two real inputs

Example 2: Specifying Sampling Frequency and Subspace
Dimensions

This example analyzes the same signal vector x with an eigenvalue
cutoff of 10% above the minimum. Setting p(1) = Inf forces the
signal/noise subspace decision to be based on the threshold parameter
p(2). Specify the eigenvectors of length 7 using the nwin argument,
and set the sampling frequency fs to 8 kHz:

n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
[P,f] = pmusic(x,[Inf,1.1],[],8000,7); % Window length = 7

Example 3: Entering a Correlation Matrix

Supply a positive definite correlation matrix R for estimating the
spectral density. Use the default 256 samples:

R = toeplitz(cos(0.1*pi*[0:6])) + 0.1*eye(7);
[P,f] = pmusic(R,4,'corr');

Example 4: Entering a Signal Data Matrix Generated from
corrmtx

Enter a signal data matrix Xm generated from data using corrmtx:

n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
Xm = corrmtx(x,7,'mod');
[P,w] = pmusic(Xm,2);
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Example 5: Using Windowing to Create the Effect of a Signal
Data Matrix

Use the same signal, but let pmusic form the 100-by-7 data matrix
using its windowing input arguments. In addition, specify an FFT of
length 512:

n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
[PP,ff] = pmusic(x,2,512,[],7,0);

Algorithms The name MUSIC is an acronym for MUltiple SIgnal Classification.
The MUSIC algorithm estimates the pseudospectrum from a signal or
a correlation matrix using Schmidt’s eigenspace analysis method [1].
The algorithm performs eigenspace analysis of the signal’s correlation
matrix in order to estimate the signal’s frequency content. This
algorithm is particularly suitable for signals that are the sum of
sinusoids with additive white Gaussian noise. The eigenvalues and
eigenvectors of the signal’s correlation matrix are estimated if you don’t
supply the correlation matrix.

The MUSIC pseudospectrum estimate is given by
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where N is the dimension of the eigenvectors and vk is the k-th
eigenvector of the correlation matrix. The integer p is the dimension of
the signal subspace, so the eigenvectors vk used in the sum correspond
to the smallest eigenvalues and also span the noise subspace. The
vector e(f) consists of complex exponentials, so the inner product

v ek
H f( )
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amounts to a Fourier transform. This is used for computation of the
pseudospectrum estimate. The FFT is computed for each vk and then
the squared magnitudes are summed.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1987, pp. 373-378.

[2] Schmidt, R.O, “Multiple Emitter Location and Signal Parameter
Estimation,” IEEE Trans. Antennas Propagation, Vol. AP-34 (March
1986), pp. 276-280.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

See Also corrmtx | dspdata | pburg | peig | periodogram | pmtm | prony |
pwelch | rooteig | rootmusic | spectrum.music
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Purpose Convert prediction filter polynomial to autocorrelation sequence

Syntax r = poly2ac(a,efinal)

Description r = poly2ac(a,efinal) finds the autocorrelation vector r
corresponding to the prediction filter polynomial a. The autocorrelation
sequence produced is approximately the same as that of the output of
the autoregressive prediction filter whose coefficients are determined
by a. poly2ac also produces the final length(r) step prediction error
efinal. If a(1) is not equal to 1, poly2ac normalizes the prediction
filter polynomial by a(1). a(1) cannot be 0.

Tips You can apply this function to both real and complex polynomials.

Examples a = [1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077];
efinal = 0.2;
r = poly2ac(a,efinal)

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988

See Also ac2poly | poly2rc | rc2ac
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Purpose Convert prediction filter coefficients to line spectral frequencies

Syntax lsf = poly2lsf(a)

Description lsf = poly2lsf(a) returns a vector lsf of line spectral frequencies
from a vector a of prediction filter coefficients.

Examples a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
lsf = poly2lsf(a)

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, Discrete-Time
Processing of Speech Signals, Prentice-Hall, 1993.

[2] Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, 1978.

See Also lsf2poly

1-825



poly2rc

Purpose Convert prediction filter polynomial to reflection coefficients

Syntax k = poly2rc(a)
[k,r0] = poly2rc(a,efinal)

Description k = poly2rc(a) converts the prediction filter polynomial a to the
reflection coefficients of the corresponding lattice structure. a can be
real or complex, and a(1) cannot be 0. If a(1) is not equal to 1, poly2rc
normalizes the prediction filter polynomial by a(1). k is a row vector
of size length(a)-1.

[k,r0] = poly2rc(a,efinal) returns the zero-lag autocorrelation, r0,
based on the final prediction error, efinal.

A simple, fast way to check if a has all of its roots inside the unit circle
is to check if each of the elements of k has magnitude less than 1.

stable = all(abs(poly2rc(a))<1)

Examples a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
efinal = 0.2;
[k,r0] = poly2rc(a,efinal)

Limitations If abs(k(i)) == 1 for any i, finding the reflection coefficients is an
ill-conditioned problem. poly2rc returns some NaNs and provide a
warning message in this case.

Algorithms poly2rc implements this recursive relationship:
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This relationship is based on Levinson’s recursion [1]. To implement
it, poly2rc loops through a in reverse order after discarding its first
element. For each loop iteration i, the function:
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1 Sets k(i) equal to a(i)

2 Applies the second relationship above to elements 1 through i of
the vector a.

a = (a-k(i)*fliplr(a))/(1-k(i)^2);

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988.

See Also ac2rc | latc2tf | latcfilt | poly2ac | rc2poly | tf2latc
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Purpose Scale roots of polynomial

Syntax b = polyscale(a,alpha)

Description b = polyscale(a,alpha) scales the roots of a polynomial in the
z-plane, where a is a vector containing the polynomial coefficients and
alpha is the scaling factor.

If alpha is a real value in the range [0 1], then the roots of a are
radially scaled toward the origin in the z-plane. Complex values for
alpha allow arbitrary changes to the root locations.

Tips By reducing the radius of the roots in an autoregressive polynomial, the
bandwidth of the spectral peaks in the frequency response is expanded
(flattened). This operation is often referred to as bandwidth expansion.

See Also polystab | roots

1-828



polystab

Purpose Stabilize polynomial

Syntax b = polystab(a)

Description polystab stabilizes a polynomial with respect to the unit circle; it
reflects roots with magnitudes greater than 1 inside the unit circle.

b = polystab(a) returns a row vector b containing the stabilized
polynomial, where a is a vector of polynomial coefficients, normally
in the z-domain.

A z a a z a m z m( ) ( ) ( ) ( )= + +…+ +− −1 2 11

Examples polystab can convert a linear-phase filter into a minimum-phase filter
with the same magnitude response:

h = fir1(25,0.4);
hmin = polystab(h) * norm(h)/norm(polystab(h));

Algorithms polystab finds the roots of the polynomial and maps those roots found
outside the unit circle to the inside of the unit circle:

v = roots(a);
vs = 0.5*(sign(abs(v)-1)+1);
v = (1-vs).*v + vs./conj(v);
b = a(1)*poly(v);

See Also roots

1-829



pow2db

Purpose Convert power to decibels (dB)

Syntax ydb = pow2db(y)

Description ydb = pow2db(y) returns the corresponding decibel (dB) value ydb for
a given power value y. The relationship between power and decibels
is ydb = 10*log10(y).

See Also db2pow
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Purpose Prony method for filter design

Syntax [Num,Den] = prony(impulse_resp,num_ord,denom_ord)

Description [Num,Den] = prony(impulse_resp,num_ord,denom_ord) returns
the numerator Num and denominator Den coefficients for a causal
rational system function with impulse response impulse_resp. The
system function has numerator order num_ord and denominator
order denom_ord. The lengths of Num and Den are num_ord+1 and
denom_ord+1. If the length of impulse_resp is less than the largest
order (num_ord or denom_ord), impulse_resp is padded with zeros.
Enter 0 in num_ord for an all-pole system function. For an all-zero
system function, enter a 0 for denom_ord.

Definitions The system function is the z-transform of the impulse response h[n]:
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A rational system function is a ratio of polynomials in z-1. By convention
the numerator polynomial is B(z) and the denominator is A(z). The
following equation describes a causal rational system function of
numerator order num_ord q and denominator order denom_ord p :
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where a[0]=1.

Examples Fit IIR model to an impulse response of lowpass filter:

d=fdesign.lowpass('Nb,Na,F3dB',4,4,0.2);
% Butterworth filter design
Hd=design(d,'butter');
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% Obtain impulse response
impulse_resp=filter(Hd,[1 zeros(1,31)]);
% Find system function of order 4
denom_order=4; num_order=4;
[Num,Den]=prony(impulse_resp,num_order,denom_order);
% Compare impulse response with input
subplot(211);
stem(impz(Num,Den,length(impulse_resp)));
title('Impulse Response with Prony Design');
subplot(212);
stem(impulse_resp); title('Input Impulse Response');

Fit FIR model to an impulse response of highpass filter:

d=fdesign.highpass('N,F3dB',10,0.8);
Hd=design(d,'maxflat');
% Impulse response
impulse_resp=filter(Hd,[1 zeros(1,31)]);
% Find all-zero system function of order 10

1-832



prony

num_order=10; denom_order=0;
[Num,Den]=prony(impulse_resp,num_order,denom_order);
% Compare Num to Hd.Numerator.
% Num and Hd.Numerator will not be identical but the
% coefficients will be close in value.

References Parks, T.W., and C.S. Burrus Digital Filter Design, John Wiley & Sons,
1987, pp., 226–228.

See Also design | fdesign | impz | levinson | lpc

How To • “Parametric Modeling”
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Purpose Period of bilevel pulse

Syntax P = pulseperiod(X)
P = pulseperiod(X,FS)
P = pulseperiod(X,T)
[P,INITCROSS] = pulseperiod(...)
[P,INITCROSS,FINALCROSS] = pulseperiod(...)
[P,INITCROSS,FINALCROSS,NEXTCROSS] = pulseperiod(...)
[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
pulseperiod(...)
[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
pulseperiod(...,

Name,Value)

Description P = pulseperiod(X) returns a vector, P, containing the difference
between the mid-reference level instants of the initial transition of each
positive-polarity pulse and the next positive-going transition in the
bilevel waveform,X. If pulseperiod does not find two positive-polarity
transitions, P is empty. To determine the transitions for each pulse,
pulseperiod estimates the state levels of the input waveform by a
histogram method and identifies all regions which cross the upper-state
boundary of the low state and the lower-state boundary of the high
state. The low-state and high-state boundaries are expressed as the
state level plus or minus a multiple of the difference between the
state levels. See “State-Level Tolerances” on page 1-839. Because
pulseperiod uses interpolation to determine the mid-reference level
instants, P may contain values that do not correspond to sampling
instants of the bilevel waveform, X.

P = pulseperiod(X,FS) specifies the sampling rate in hertz as a
positive scalar. The first sample instant in X corresponds to t=0.
Because pulseperiod uses interpolation to determine the mid-reference
level instants, P may contain values that do not correspond to sampling
instants of the bilevel waveform, X.

P = pulseperiod(X,T) specifies the sampling instants in a vector
equal in length to X. Because pulseperiod uses interpolation to
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determine the mid-reference level instants, P may contain values that
do not correspond to sampling instants of the bilevel waveform, X.

[P,INITCROSS] = pulseperiod(...) returns the mid-reference level
instants of the first transition of each pulse.

[P,INITCROSS,FINALCROSS] = pulseperiod(...) returns the
mid-reference level instants of the final transition of each pulse.

[P,INITCROSS,FINALCROSS,NEXTCROSS] = pulseperiod(...) returns
the mid-reference level instants of next detected transition after each
pulse.

[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
pulseperiod(...) returns the mid-reference level,MIDLEV.

[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
pulseperiod(...,Name,Value) returns the pulse periods
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

X

Bilevel waveform. If the waveform, X, does not contain at least two
transitions, pulseperiod outputs an empty matrix.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’MidPct’

Mid-reference level as a percentage of the waveform amplitude.

Default: 50
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’Polarity’

Pulse polarity. Specify the polarity as 'positive' or 'negative'.
If you specify 'positive', pulseperiod looks for pulses whose
initial transition is positive-going (positive polarity). If you specify
'negative', pulseperiod looks for pulses whose initial transition is
negative-going (negative polarity).

Default: 'positive'

’StateLevels’

Low- and high-state levels. StateLevels is a 1-by-2 real-valued
vector. The first element is the low-state level. The second element is
the high-state level. If you do not specify low and high-state levels,
pulseperiod estimates the state levels from the input waveform using
the histogram method.

’Tolerance’

Tolerance levels (lower and upper state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-839.

Default: 2

Output
Arguments

P

Pulse period in seconds. The pulse period is defined as the time between
the mid-reference level instants of two consecutive transitions.

INITCROSS

Mid-reference level instant of initial transition.

FINALCROSS

Mid-reference level instant of final transition.

NEXTCROSS
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Mid-reference level instant of the first pulse transition after the final
transition of the preceding pulse.

MIDLEV

Waveform value that corresponds to the mid-reference level.

Definitions Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S_1,
and high- state level, S_2, is

S S S1 2 1
1
2

 ( )

Mid-Reference Level Instant

Let y50% denote the mid-reference level.

Let t50%-
and t50%+

denote the two consecutive sampling instants
corresponding to the waveform values nearest in value to y50%.

Let y50%-
and y50%+

denote the waveform values at t50%-
and t50%+

.

The mid-reference level instant is
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Pulse Polarity

If the initial transition of a pulse is positive-going, the pulse has positive
polarity. The following figure shows a positive-polarity pulse.
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Equivalently, a positive-polarity (positive-going) pulse has a
terminating state more positive than the originating state.

If the initial transition of a pulse is negative-going, the pulse has
negative polarity. The following figure shows a negative-polarity pulse.
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Equivalently, a negative-polarity (negative-going) pulse has a
originating state more positive than the terminating state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as
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S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Pulse Period of Bilevel Waveform

Compute the pulse period of a bilevel waveform with two
positive-polarity transitions. The sampling rate is 4 MHz.
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load('pulseex.mat', 'x', 't');
p = pulseperiod(x, t);

Determine Mid-Reference Level Instants of Pulse Period

Determine the mid-reference level instants, which define the pulse
period for a bilevel waveform. Mark the mid-reference level instants
on a plot of the data.

load('pulseex.mat', 'x', 't');
[p,initcross,~,nextcross,midlev] = pulseperiod(x,t);
fprintf('Pulse period is %2.3f microseconds \n',p*1e6);
plot(t.*1e6,x); hold on;
grid on; axis tight; xlabel('microseconds');
plot(initcross.*1e6,midlev,'ro','markerfacecolor',[1 0 0]);
plot(nextcross.*1e6,midlev,'ro','markerfacecolor',[1 0 0]);
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References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.

See Also dutycycle | pulsesep | pulsewidth | statelevels
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Purpose Separation between bilevel waveform pulses

Syntax S = pulsesep(X)
S = pulsesep(X,FS)
S = pulsesep(X,T)
[S,INITCROSS] = pulsesep(...)
[S,INITCROSS,FINALCROSS] = pulsesep(...)
[S,INITCROSS,FINALCROSS,NEXTCROSS] = pulsesep(...)
[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulsesep(...)
[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
pulsesep(...,Name,

Value)

Description S = pulsesep(X) returns the differences, S, between the mid-reference
level instants of the final negative-going transitions of every
positive-polarity pulse and the next positive-going transition. X is a
bilevel waveform. To determine the transitions that compose each
pulse, pulsesep estimates the state levels of X by a histogram method.
pulsesep identifies all regions that cross the upper-state boundary
of the low state and the lower-state boundary of the high state. The
low-state and high-state boundaries are expressed as the state level
plus or minus a multiple of the difference between the state levels.
See “State-Level Tolerances” on page 1-849. Because pulsesep uses
interpolation to determine the mid-reference level instants, S may
contain values that do not correspond to sampling instants of the bilevel
waveform, X.

S = pulsesep(X,FS) specifies the sampling rate, FS, in Hz as a positive
scalar. The first time instant corresponds to t=0. Because pulsesep
uses interpolation to determine the mid-reference level instants, S
may contain values that do not correspond to sampling instants of the
bilevel waveform, X.

S = pulsesep(X,T) specifies the sampling instants, T, in a vector
equal in length to X. Because pulsesep uses interpolation to determine
the mid-reference level instants, S may contain values that do not
correspond to sampling instants of the bilevel waveform, X.
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[S,INITCROSS] = pulsesep(...) returns the mid-reference level
instants, INITCROSS, of the first positive-polarity transitions.

[S,INITCROSS,FINALCROSS] = pulsesep(...) returns the
mid-reference level instants, FINALCROSS, of the final transition of
each pulse.

[S,INITCROSS,FINALCROSS,NEXTCROSS] = pulsesep(...) returns
the mid-reference level instants, NEXTCROSS, of the next detected
transition after each pulse.

[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulsesep(...)
returns the mid-reference level, MIDLEV.

[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] =
pulsesep(...,Name,Value) returns the pulse separations
with additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

X

Bilevel waveform. If the waveform, X, does not contain at least two
transitions, pulsesep outputs an empty matrix.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’MidPct’

Mid-reference level as a percentage of the waveform amplitude.

Default: 50
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’Polarity’

Pulse polarity. Specify the polarity as 'positive' or 'negative'. If
you specify 'positive', pulsesep looks for pulses with positive-going
(positive polarity) initial transitions. If you specify 'negative',
pulsesep looks for pulses with negative-going (negative polarity) initial
transitions. See “Pulse Polarity” on page 1-847.

Default: 'positive'

’StateLevels’

Low- and high-state levels. StateLevels is a 1-by-2 real-valued
vector. The first element is the low-state level. The second element is
the high-state level. If you do not specify low- and high-state levels,
pulsesep estimates the state levels from the input waveform using the
histogram method.

’Tolerance’

Tolerance levels (lower- and upper-state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-849.

Default: 2

Output
Arguments

S

Pulse separations in seconds. The pulse separation is defined as the
time between the mid-reference level instants of the final transition
of one pulse and the initial transition of the next pulse. See “Pulse
Separation” on page 1-851.

INITCROSS

Mid-reference level instants of initial transition.

FINALCROSS

Mid-reference level instants of final transition.
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NEXTCROSS

Mid-reference level instants of the initial transition after the final
transition of the preceding pulse.

MIDLEV

Waveform value that corresponds to the mid-reference level.

Definitions Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S_1,
and high-state level, S_2, is

S S S1 2 1
1
2

 ( )

Mid-Reference Level Instant

Let y50% denote the mid-reference level.

Let t50%-
and t50%+

denote the two consecutive sampling instants
corresponding to the waveform values nearest in value to y50%.

Let y50%-
and y50%+

denote the waveform values at t50%-
and t50%+

.

The mid-reference level instant is
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Pulse Polarity

If the pulse has an initial positive-going transition, the pulse has
positive polarity. The following figure shows a positive-polarity pulse.
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Equivalently, a positive-polarity (positive-going) pulse has a
terminating state more positive than the originating state.

If the pulse has an initial negative-going transition, the pulse has
negative polarity. The following figure shows a negative-polarity pulse.
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Equivalently, a negative-polarity (negative-going) pulse has a
originating state more positive than the terminating state.

State-Level Tolerances

Each state level can have an associated lower- and upper-state
boundary. These state boundaries are defined as the state level plus or
minus a scalar multiple of the difference between the high state and
low state. To provide a useful tolerance region, the scalar is typically
a small number such as 2/100 or 3/100. In general, the α% tolerance
region for the low state is defined as
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S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Pulse Separation

Pulse separation is the time difference between the mid-reference level
instant of the final transition of one pulse and the mid-reference level
instant of the initial transition of the next pulse. The following figure
illustrates pulse separation.
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Examples Pulse Separation in Bilevel Waveform

Compute the pulse separation in a bilevel waveform with two
positive-polarity transitions. The sampling rate is 4 MHz.

load('pulseex.mat', 'x', 't');
s = pulsesep(x, t);
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Determine Mid-Reference Level Instants Defining Pulse
Separation

Determine the mid-reference level instants, which define the pulse
separation for a bilevel waveform. Mark the mid-reference level
instants on a plot of the data.

load('pulseex.mat', 'x', 't');
[s,~,finalcross,nextcross,midlev] = pulsesep(x,t);
fprintf('Pulse separation is %2.3f microseconds \n',s*1e6);
plot(t.*1e6,x); hold on;
grid on; axis tight; xlabel('microseconds');
plot(finalcross.*1e6,midlev,'ro','markerfacecolor',[1 0 0]);
plot(nextcross.*1e6,midlev,'ro','markerfacecolor',[1 0 0]);
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References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.

See Also dutycycle | pulseperiod | pulsewidth | statelevels
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Purpose Bilevel waveform pulse width

Syntax W = pulsewidth(X)
W = pulsewidth(X,FS)
W = pulsewidth(X,T)
[W,INITCROSS] = pulsewidth(...)
[W,INITCROSS,FINALCROSS] = pulsewidth(...)
[W,INITCROSS,FINALCROSS,MIDLEV] = pulsewidth(...)
W = pulsewidth(...,Name,Value)

Description W = pulsewidth(X) returns a vector, W, containing the time differences
between the mid-reference level instants of the initial and final
transitions of each positive-polarity pulse in the bilevel waveforml,
X. To determine the transitions, pulsewidth estimates the low- and
high-state levels of X by a histogram method. pulsewidth identifies all
regions that cross the upper-state boundary of the low state and the
lower-state boundary of the high state. The low-state and high-state
boundaries are expressed as the state level plus or minus a multiple of
the difference between the state levels. See “State-Level Tolerances”
on page 1-860. Because pulsewidth uses interpolation to determine
the mid-reference level instants, W may contain values that do not
correspond to sampling instants of the bilevel waveform, X.

W = pulsewidth(X,FS) specifies the sample rate, FS, in hertz as a
positive scalar. The first sample in the waveform corresponds to t=0.
Because pulsewidth uses interpolation to determine the mid-reference
level instants, W may contain values that do not correspond to sampling
instants of the bilevel waveform, X.

W = pulsewidth(X,T) specifies the sample instants, T, as a vector
with the same number of elements as X. Because pulsewidth uses
interpolation to determine the mid-reference level instants, W may
contain values that do not correspond to sampling instants of the bilevel
waveform, X.

[W,INITCROSS] = pulsewidth(...) returns a column vector,
INITCROSS, whose elements correspond to the mid-reference level
instants of the initial transition of each pulse.
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[W,INITCROSS,FINALCROSS] = pulsewidth(...) returns a column
vector, FINALCROSS, whose elements correspond to the mid-reference
level instants of the final transition of each pulse.

[W,INITCROSS,FINALCROSS,MIDLEV] = pulsewidth(...) returns the
waveform value, MIDLEV, which corresponds to the mid-reference level.

W = pulsewidth(...,Name,Value) returns the pulse widths with
additional options specified by one or more Name,Value pair
arguments.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’MidPct’

Mid-reference level as percentage of the waveform amplitude. See
“Mid-Reference Level” on page 1-857.

Default: 50

’Polarity’

Pulse polarity. Specify the polarity as 'positive' or 'negative'. If
you specify 'positive', pulsewidth looks for pulses with positive-going
(positive polarity) initial transitions. If you specify 'negative',
pulsewidth looks for pulses with negative-going (negative polarity)
initial transitions. See “Pulse Polarity” on page 1-858.
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Default: 'positive'

’StateLevels’

Low- and high-state levels. StateLevels is a 1-by-2 real-valued
vector. The first element is the low-state level. The second element is
the high-state level. If you do not specify low- and high-state levels,
pulsewidth estimates the state levels from the input waveform using
the histogram method.

’Tolerance’

Tolerance levels (lower and upper state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-860.

Default: 2

Output
Arguments

W

Pulse widths in seconds. The pulse width is the time difference between
the initial and final transitions of a pulse. The times of the initial and
final transitions are referred to as transition occurence instants in [1].

INITCROSS

Mid-reference level instants of the initial transition

FINALCROSS

Mid-reference level instants of the final transition

MIDLEV

Waveform value corresponding to the mid-reference level

Definitions Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S_1,
and high- state level, S_2, is
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Mid-Reference Level Instant

Let y50% denote the mid-reference level.

Let t50%-
and t50%+

denote the two consecutive sampling instants
corresponding to the waveform values nearest in value to y50%.

Let y50%-
and y50%+

denote the waveform values at t50%-
and t50%+

.

The mid-reference level instant is
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Pulse Polarity

If the pulse has a positive-going initial transition, the pulse has positive
polarity. The following figure shows a positive-polarity pulse.

1-858



pulsewidth

Equivalently, a positive-polarity (positive-going) pulse has a
terminating state more positive than the originating state.

If the pulse has a negative-going initial transition, the pulse has
negative polarity. The following figure shows a negative-polarity pulse.
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Equivalently, a negative-polarity (negative-going) pulse has a
originating state more positive than the terminating state.

State-Level Tolerances

Each state level can have an associated lower- and upper-state
boundary. These state boundaries are defined as the state level plus or
minus a scalar multiple of the difference between the high state and
low state. To provide a useful tolerance region, the scalar is typically
a small number such as 2/100 or 3/100. In general, the α% tolerance
region for the low state is defined as
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where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Pulse Width of Bilevel Waveform

Compute the pulse width of a bilevel waveform sampled at 4 MHz.

load('pulseex.mat', 'x', 't');
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w = pulsewidth(x, t);
plot(t,x); grid on;

First and Second Transition Times for Bilevel Waveform

Compute the initial and final transition occurrences for a bilevel
waveform sampled at 4 MHz. Plot the result annotated with the
transition occurrences.

load('pulseex.mat', 'x', 't');
fs = 4e6;
[w,initcross,finalcross] = pulsewidth(x,fs);
plot(t.*1e6,x);
set(gca,'xtick',[initcross*1e6 finalcross*1e6]);
grid on;
xlabel('microseconds');
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Specify State Levels for Bilevel Waveform

Specify the state levels for the bilevel waveform instead of estimating
the levels from the data. Use the 'StateLevels' name-value pair to
enter the low-state level as 0 and the high-state level as 5.

load('pulseex.mat', 'x', 't');
[w,initcross,finalcross] = pulsewidth(x,fs,'StateLevels',[0 5]);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.
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See Also dutycycle | pulseperiod | pulsesep | statelevels

1-865



pulstran

Purpose Pulse train

Syntax pulstran
y = pulstran(t,d,'func')
pulstran(t,d,'func',p1,p2,...)
pulstran(t,d,p,fs)
pulstran(t,d,p)
pulstran(...,'func')

Description pulstran generates pulse trains from continuous functions or sampled
prototype pulses.

y = pulstran(t,d,'func') generates a pulse train based on samples
of a continuous function, 'func', where 'func' is

• 'gauspuls', for generating a Gaussian-modulated sinusoidal pulse

• 'rectpuls', for generating a sampled aperiodic rectangle

• 'tripuls', for generating a sampled aperiodic triangle

pulstran is evaluated length(d) times and returns the sum of the
evaluations y = func(t-d(1)) + func(t-d(2)) + ...

The function is evaluated over the range of argument values specified
in array t, after removing a scalar argument offset taken from the
vector d. Note that func must be a vectorized function that can take an
array t as an argument.

An optional gain factor may be applied to each delayed evaluation by
specifying d as a two-column matrix, with the offset defined in column 1
and associated gain in column 2 of d. Note that a row vector will be
interpreted as specifying delays only.

pulstran(t,d,'func',p1,p2,...) allows additional parameters to be
passed to 'func' as necessary. For example:

func(t-d(1),p1,p2,...) + func(t-d(2),p1,p2,...) + ...

pulstran(t,d,p,fs) generates a pulse train that is the sum of multiple
delayed interpolations of the prototype pulse in vector p, sampled at the
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rate fs, where p spans the time interval [0,(length(p)-1)/fs], and
its samples are identically 0 outside this interval. By default, linear
interpolation is used for generating delays.

pulstran(t,d,p) assumes that the sampling rate fs is equal to 1 Hz.

pulstran(...,'func') specifies alternative interpolation methods.
See interp1 for a list of available methods.

Examples Example 1

This example generates an asymmetric sawtooth waveform with a
repetition frequency of 3 Hz and a sawtooth width of 0.1s. It has a
signal length of 1s and a 1 kHz sample rate:

t = 0 : 1/1e3 : 1; % 1 kHz sample freq for 1 sec
d = 0 : 1/3 : 1; % 3 Hz repetition freq
y = pulstran(t,d,'tripuls',0.1,-1);
plot(t,y)

1-867



pulstran

Example 2

This example generates a periodic Gaussian pulse signal at 10 kHz,
with 50% bandwidth. The pulse repetition frequency is 1 kHz, sample
rate is 50 kHz, and pulse train length is 10 msec. The repetition
amplitude should attenuate by 0.8 each time:

t = 0 : 1/50E3 : 10e-3;
d = [0 : 1/1E3 : 10e-3 ; 0.8.^(0:10)]';
y = pulstran(t,d,'gauspuls',10e3,0.5);
plot(t,y)

See Also chirp | cos | diric | gauspuls | rectpuls | sawtooth | sin | sinc
| square | tripuls
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Purpose Welch’s power spectral density estimate

Syntax pxx = pwelch(x)
pxx = pwelch(x,window)
pxx = pwelch(x,window,noverlap)
pxx = pwelch(x,window,noverlap,nfft)

[pxx,w] = pwelch( ___ )
[pxx,f] = pwelch( ___ ,fs)

[pxx,w] = pwelch(x,window,noverlap,w)
[pxx,f] = pwelch(x,window,noverlap,f,fs)

[ ___ ] = pwelch(x,window, ___ ,freqrange)
[ ___ ] = pwelch(x,window, ___ ,spectrumtype)

[pxx,f,pxxc] = pwelch( ___ ,'ConfidenceLevel', probability)

pwelch( ___ )

Description pxx = pwelch(x) returns the power spectral density (PSD) estimate,
pxx, of the input signal, x using Welch’s overlapped segment averaging
estimator. If x is real-valued, pxx is a one-sided PSD estimate. If x
is complex-valued, pxx is a two-sided PSD estimate. By default, x is
divided into 8 segments with 50% overlap and each section is windowed
with a Hamming window. The modified periodograms are averaged to
obtain the PSD estimate. If you cannot divide the length of x exactly
into eight sections with 50% overlap, x is truncated accordingly.

pxx = pwelch(x,window) uses the input vector or integer, window, to
divide the signal into sections. If window is a vector, pwelch divides
the signal into sections equal in length to the length of window.
The modified periodograms are computed using the signal sections
multiplied by the vector, window. If window is an integer, the signal is
divided into sections of length window. The modified periodograms are
computed using a Hamming window of length window.
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pxx = pwelch(x,window,noverlap) uses noverlap samples of
overlap from section to section. noverlap must be an positive integer
smaller than window if window is an integer. noverlap must be a
positive integer less than the length of window if window is a vector. If
you do not specify noverlap, or specify noverlap as empty, the default
number of overlapped samples is 50% of the window length.

pxx = pwelch(x,window,noverlap,nfft) specifies the number of
discrete Fourier transform (DFT) points to use in the PSD estimate.
The default nfft is the greater of 256 or the next power of 2 greater
than the length of the segments.

[pxx,w] = pwelch( ___ )returns the normalized frequency vector, w.
If pxx is a one-sided PSD estimate, w spans the interval [0,π] if nfft
is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate, w
spans the interval [0,2π).

[pxx,f] = pwelch( ___ ,fs) returns a frequency vector, f, in cycles
per unit time. The sampling frequency, fs, is the number of samples
per unit time. If the unit of time is seconds, then f is in cycles/sec (Hz).
For real–valued signals, f spans the interval [0,fs/2] when nfft is
even and [0,fs/2) when nfft is odd. For complex-valued signals, f
spans the interval [0,fs).

[pxx,w] = pwelch(x,window,noverlap,w) returns the two-sided
Welch PSD estimates at the normalized frequencies specified in the
vector, w. The vector, w, must contain at least 2 elements.

[pxx,f] = pwelch(x,window,noverlap,f,fs) returns the two-sided
Welch PSD estimates at the frequencies specified in the vector, f. The
vector, f, must contain at least 2 elements. The frequencies in f are
in cycles per unit time. The sampling frequency, fs, is the number
of samples per unit time. If the unit of time is seconds, then f is in
cycles/sec (Hz).
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[ ___ ] = pwelch(x,window, ___ ,freqrange) returns the Welch PSD
estimate over the frequency range specified by freqrange. Valid
options for freqrange are: 'onesided', 'twosided', or 'centered'.

[ ___ ] = pwelch(x,window, ___ ,spectrumtype) returns the PSD
estimate if spectrumtype is specified as 'psd' and returns the power
spectrum if spectrumtype is specified as 'power'.

[pxx,f,pxxc] = pwelch( ___ ,'ConfidenceLevel', probability)
returns the probabilityx100% confidence intervals for the PSD
estimate in pxxc.

pwelch( ___ ) with no output arguments plots the Welch PSD estimate
in the current figure window.

Input
Arguments

x - Input signal
vector

Input signal, specified as a row or column vector.

Data Types
single | double
Complex Number Support: Yes

window - Window
integer | vector | []

Window, specified as a row or column vector or an integer. If window is
a vector, pwelch divides x into overlapping sections of length equal to
the length of window, and then multiplies each signal section with the
vector specified in window. If window is an integer, pwelch is divided
into sections of length equal to the integer value, and a Hamming
window of equal length is used. If the length of x cannot be divided
exactly into an integer number of sections with noverlap number of
overlapping samples, x is truncated accordingly. If you specify window
as empty, the default Hamming window is used to obtain eight sections
of x with noverlap overlapping samples.
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Data Types
single | double

noverlap - Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer smaller
than the length of window. If you omit noverlap or specify noverlap
as empty, a value is used to obtain 50% overlap between segments.

nfft - Number of DFT points
max(256,2^nextpow2(length(window)) (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued
input signal, x, the PSD estimate, pxx has length (nfft/2+1) if nfft
is even, and (nfft+1)/2 if nfft is odd. For a complex-valued input
signal,x, the PSD estimate always has length nfft. If nfft is specified
as empty, the default nfft is used.

If nfft is greater than the segment length, the data is zero-padded. If
nfft is less than the segment length, the segment is wrapped using
datawrap to make the length equal to nfft.

Data Types
single | double

fs - Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar. The sampling
frequency is the number of samples per unit time. If the unit of time is
seconds, the sampling frequency has the units hertz.

w - Normalized frequencies for Goertzel algorithm
vector

Normalized frequencies for Goertzel algorithm, specified as a row or
column vector with at least 2 elements. Normalized frequencies are
in radians/sample.
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Example: w = [pi/4 pi/2]

Data Types
double

f - Cyclical frequencies for Goertzel algorithm
vector

Cyclical frequencies for Goertzel algorithm, specified as a row or column
vector with at least 2 elements. The frequencies are in cycles per unit
time. The unit time is specified by the sampling frequency, fs. If fs
has units of samples/second, then f has units of Hz.

Example: fs = 1000; f= [100 200]

Data Types
double

freqrange - Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided',
'twosided', or 'centered'. The default is 'onesided' for real-valued
signals and 'twosided' for complex-valued signals. The frequency
ranges corresponding to each option are

• 'onesided'— returns the one-sided PSD estimate of a real-valued
input signal, x. If nfft is even, pxx will have length nfft/2+1 and is
computed over the interval [0,π] radians/sample. If nfft is odd, the
length of pxx is (nfft+1)/2 and the interval is [0,π) radians/sample.
When fs is optionally specified, the corresponding intervals are
[0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time for even and
odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the
real-valued or complex-valued input, x. In this case, pxx has length
nfft and is computed over the interval [0,2π) radians/sample. When
fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for
either the real-valued or complex-valued input, x. In this case,
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pxx has length nfft and is computed over the interval (-π,π]
radians/sample for even length nfft and (-π,π) radians/sample for
odd length nfft. When fs is optionally specified, the corresponding
intervals are (-fs/2, fs/2] cycles/unit time and (-fs/2, fs/2)
cycles/unit time for even and odd length nfft respectively.

Data Types
char

spectrumtype - Power spectrum scaling
'psd' (default) | 'power'

Power spectrum scaling, specified as one of 'psd' or 'power'. Omitting
the spectrumtype, or specifying 'psd', returns the power spectral
density. Specifying 'power' scales each estimate of the PSD by the
equivalent noise bandwidth of the window. Use the 'power' option to
obtain an estimate of the power at each frequency.

Data Types
char

probability - Confidence interval for PSD estimate
0.95 (default) | Scalar in the range (0,1)

Coverage probability for the true PSD, specified as a scalar in the range
(0,1). The output, pxxc, contains the lower and upper bounds of the
probabilityx100% interval estimate for the true PSD.

Output
Arguments

pxx - PSD estimate
vector

PSD estimate, specified as a real-valued, nonnegative column vector.

Data Types
single | double

w - Normalized frequencies
vector
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Normalized frequencies, specified as a real-valued column vector. If pxx
is a one-sided PSD estimate, w spans the interval [0,π] if nfft is even
and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate, w spans the
interval [0,2π). For a DC-centered PSD estimate, f spans the interval
(-π,π] radians/sample for even length nfft and (-π,π) radians/sample
for odd length nfft.

Data Types
double

f - Cyclical frequencies
vector

Cyclical frequencies, specified as a real-valued column vector. For a
one-sided PSD estimate, f spans the interval [0,fs/2] when nfft is
even and [0,fs/2) when nfft is odd. For a two-sided PSD estimate, f
spans the interval [0,fs). For a DC-centered PSD estimate, f spans the
interval (-fs/2, fs/2] cycles/unit time for even length nfft and (-fs/2,
fs/2) cycles/unit time for odd length nfft .

Data Types
double

pxxc - Confidence bounds
matrix

Confidence bounds, specified as an N-by-2 matrix with real-valued
elements. The row dimension of the matrix is equal to the length of the
PSD estimate, pxx. The first column contains the lower confidence
bound and the second column contains the upper confidence bound for
the corresponding PSD estimates in the rows of pxx. The coverage
probability of the confidence intervals is determined by the value of
the probability input.

Data Types
single | double
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Examples Welch Estimate Using Default Inputs

Obtain the Welch PSD estimate of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the Welch PSD estimate using the default Hamming window
and DFT length. The default segment length is 71 samples and the
DFT length is the 256 points yielding a frequency resolution of 2π/256
radians/sample. Because the signal is real-valued, the periodogram is
one-sided and there are 256/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pxx = pwelch(x);
plot(10*log10(pxx))

Welch Estimate Using Specified Segment Length

Obtain the Welch PSD estimate of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the Welch PSD estimate dividing the signal into segments 100
samples in length. The signal segments are multiplied by a Hamming
window 100 samples in length. The number of overlapped samples is
50. The DFT length is 256 points yielding a frequency resolution of
2π/256 radians/sample. Because the signal is real-valued, the PSD
estimate is one-sided and there are 256/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
segmentLength = 100;
pxx = pwelch(x,segmentLength);
plot(10*log10(pxx))
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Welch Estimate Specifying Segment Overlap

Obtain the Welch PSD estimate of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the Welch PSD estimate dividing the signal into segments 100
samples in length. The signal segments are multiplied by a Hamming
window 100 samples in length. The number of overlapped samples is
25. The DFT length is 256 points yielding a frequency resolution of
2π/256 radians/sample. Because the signal is real-valued, the PSD
estimate is one-sided and there are 256/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
segmentLength = 100;
noverlap = 25;
pxx = pwelch(x,segmentLength,noverlap);
plot(10*log10(pxx))

Welch Estimate Using Specified DFT Length

Obtain the Welch PSD estimate of an input signal consisting of a
discrete-time sinusoid with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample
with additive N(0,1) white noise. The signal is 320 samples in length.
Obtain the Welch PSD estimate dividing the signal into segments 100
samples in length. Use the default overlap of 50%. Specify the DFT
length to be 640 points so that the frequency of π/4 radians/sample
corresponds to a DFT bin (bin 81).Because the signal is real-valued, the
PSD estimate is one-sided and there are 640/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
segmentLength = 100;
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nfft = 640;
pxx = pwelch(x,segmentLength,[],nfft);
plot(10*log10(pxx));
xlabel('Radians/sample'); ylabel('dB');

Welch PSD Estimate of Signal with Frequency in Hz

Create a signal consisting of a 100-Hz sinusoid in additive N(0,1)
white noise. The sampling rate is 1 kHz and the signal is 5 seconds
in duration.

fs = 1000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t)+randn(size(t));

Obtain Welch’s overlapped segment averaging PSD estimate of the
preceding signal. Use a segment length of 500 samples with 300
overlapped samples. Use 500 DFT points so that 100 Hz falls directly
on a DFT bin. Input the sampling frequency to output a vector of
frequencies in Hz. Plot the result.

[pxx,f] = pwelch(x,500,300,500,fs);
plot(f,10*log10(pxx))
xlabel('Hz'); ylabel('dB');

DC-Centered Power Spectrum

Create a signal consisting of a 100-Hz sinusoid in additive N(0,1/4)
white noise. The sampling rate is 1 kHz and the signal is 5 seconds
in duration.

fs = 1000;
t = 0:1/fs:5-1/fs;
noisevar = 1/4;
x = cos(2*pi*100*t)+sqrt(noisevar)*randn(size(t));

Obtain the DC-centered power spectrum using Welch’s method. Use a
segment length of 500 samples with 300 overlapped samples and a DFT
length of 500 points. Plot the result.
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[pxx,f] = pwelch(x,500,300,500,fs,'centered','power');
plot(f,pxx);
xlabel('Hz'); ylabel('dB');
grid on;

You see that the power at –100 and 100 Hz is close to the expected
power of 1/4 for a real-valued sine wave with an amplitude of 1. The
deviation from 1/4 is due to the effect of the additive noise.

Upper and Lower 95%-Confidence Bounds

The following example illustrates the use of confidence bounds with
Welch’s overlapped segment averaging (WOSA) PSD estimate. While
not a necessary condition for statistical significance, frequencies in
Welch’s estimate where the lower confidence bound exceeds the upper
confidence bound for surrounding PSD estimates clearly indicate
significant oscillations in the time series.

Create a signal consisting of the superposition of 100-Hz and 150-Hz
sine waves in additive white N(0,1) noise. The amplitude of the two sine
waves is 1. The sampling frequency is 1 kHz.

t = 0:0.001:1-0.001;
fs = 1000;
x = cos(2*pi*100*t)+sin(2*pi*150*t)+randn(size(t));

Obtain the WOSA estimate with 95%-confidence bounds. Set the
segment length equal to 200 and overlap the segments by 50% (100
samples). Plot the WOSA PSD estimate along with the confidence
interval and zoom in on the frequency region of interest near 100 and
150 Hz.

L = 200;
noverlap = 100;
[pxx,f,pxxc] = pwelch(x,hamming(L),noverlap,200,fs,...

'ConfidenceLevel',0.95);
plot(f,10*log10(pxx)); hold on;
plot(f,10*log10(pxxc),'r--','linewidth',2);
axis([25 250 min(min(10*log10(pxxc))) max(max(10*log10(pxxc)))]);
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xlabel('Hz'); ylabel('dB');
title('Welch Estimate with 95%-Confidence Bounds');

At 100 and 150 Hz, the lower confidence bound exceeds the upper
confidence bounds for surrounding PSD estimates.
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Definitions Welch’s Overlapped Segment Averaging (WOSA) Spectral
Estimation

The periodogram is not a consistent estimator of the true power
spectral density of a wide-sense stationary process. Welch’s technique
to reduce the variance of the periodogram breaks the time series into
segments, usually overlapping. Welch’s method computes a modified
periodogram for each segment and then averages these estimates to
produce the estimate of the power spectral density. Because the process
is wide-sense stationary and Welch’s method uses PSD estimates
of different segments of the time series, the modified periodograms
represent approximately uncorrelated estimates of the true PSD and
averaging reduces the variability.

The segments are typically multiplied by a window function, such as
a Hamming window, so that Welch’s method amounts to averaging
modified periodograms. Because the segments usually overlap, data
values at the beginning and end of the segment tapered by the window
in one segment, occur away from the ends of adjacent segments. This
guards against the loss of information caused by windowing.

See Also periodogram | pmtm

Related
Examples

• “Bias and Variability in the Periodogram”

Concepts • “Spectral Analysis”
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Purpose PSD using Yule-Walker AR method

Syntax Pxx = pyulear(x,order)
Pxx = pyulear(x,order,nfft)
[Pxx,w] = pyulear(...)
[Pxx,w] = pyulear(x,order,w)
Pxx = pyulear(x,order,nfft,fs)
Pxx = pyulear(x,order,f,fs)
[Pxx,f] = pyulear(x,order,nfft,fs)
[Pxx,f] = pyulear(x,order,f,fs)
[Pxx,f] = pyulear(x,order,nfft,fs,freqrange)
[Pxx,w] = pyulear(x,order,nfft,freqrange)
[Pxx,f,Pxxc] = pyulear(...,'ConfidenceLevel',P)
pyulear(...)

Description Pxx = pyulear(x,order) implements the Yule-Walker algorithm, a
parametric spectral estimation method, and returns Pxx, an estimate
of the power spectral density (PSD) of the vector x. The entries of
x represent samples of a discrete-time signal. order is the integer
specifying the order of an autoregressive (AR) prediction model for the
signal, used in estimating the PSD. This estimate is also an estimate
of the maximum entropy.

The power spectral density is calculated in units of power per radians
per sample. Real-valued inputs produce full power one-sided (in
frequency) PSDs (by default), while complex-valued inputs produce
two-sided PSDs.

In general, the length of the FFT and the values of the input x
determine the length of Pxx and the range of the corresponding
normalized frequencies. For this syntax, the (default) FFT length is
256. The following table indicates the length of Pxx and the range of the
corresponding normalized frequencies for this syntax.
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PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data Length of Pxx

Range of the
Corresponding
Normalized
Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

Pxx = pyulear(x,order,nfft) uses the integer FFT length nfft to
calculate the PSD vector Pxx.

[Pxx,w] = pyulear(...) also returns w, a vector of normalized
angular frequencies at which the two-sided PSD is estimated. Pxx and w
have the same length. The units for w are rad/sample.

The length of Pxx and the frequency range for w depend on nfft and the
values of the input x. The following table indicates the length of Pxx
and the frequency range for w in this syntax.

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

[Pxx,w] = pyulear(x,order,w) uses a vector of normalized
frequencies w with two or more elements to compute the PSD at those
frequencies and returns a two-sided PSD.

Pxx = pyulear(x,order,nfft,fs)

or
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Pxx = pyulear(x,order,f,fs) uses the integer FFT length nfft to
calculate the PSD vector Pxx or uses the vector of frequencies f in Hz
and the sampling frequency fs to compute the two-sided PSD vector
Pxx at those frequencies. If you specify nfft as the empty vector [], it
uses the default value of 256. If you specify fs as the empty vector
[], the sampling frequency fs defaults to 1 Hz. The spectral density
produced is calculated in units of power per Hz.

[Pxx,f] = pyulear(x,order,nfft,fs)

or

[Pxx,f] = pyulear(x,order,f,fs) returns the frequency vector f. In
this case, the units for the frequency vector are in Hz. The frequency
range for f depends on nfft, fs, and the values of the input x. The
length of Pxx is the same as in the table above. The following table
indicates the frequency range for f for this syntax.

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex
Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

[Pxx,f] = pyulear(x,order,nfft,fs,freqrange) or

[Pxx,w] = pyulear(x,order,nfft,freqrange) specifies the range of
frequency values to include in the output frequency vectors, f or w. This
syntax is useful when x is real. freqrange can be either:

• 'onesided' — returns the one-sided PSD of a real input signal, x.
If nfft is even, Pxx has length nfft/2+1 and is computed over the
interval [0,π]. If nfft is odd, the length of Pxx is (nfft+1)/2 and the
frequency interval is [0,π). When your specify fs , the intervals are
[0,fs/2] and [0,fs/2) for even and odd length nfft respectively.
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• 'twosided'— returns the two-sided PSD for either real or complex
input, x. In this case, Pxx has length nfft and is computed over the
interval [0,2π). When you specify fs, the frequency interval is [0,fs).

• 'centered'— returns the centered two-sided PSD for either real or
complex input, x. In this case, Pxx has length nfft and is computed
over the interval (-π, π] for even length nfft and (-π, π) for odd length
nfft. When you specify fs, the frequency intervals are (-fs/2, fs/2]
and (-fs/2,fs/2) for even and odd length nfft respectively.

[Pxx,f,Pxxc] = pyulear(...,'ConfidenceLevel',P) returns the
P100% confidence interval for Pxx, where P is a nonnegative scalar
between 0 and 1. The default value for P is 0.95. Large-sample
confidence intervals are computed using a Gaussian probability density
function. Pxxc is N-by-2 matrix, where N is the length of Pxx. The first
column, Pxxc(:,1), is the lower bound of the confidence interval. The
second column, Pxxc(:,2), is the upper bound. See [1] for a description
of approximate large-sample confidence intervals for AR PSD estimates.

pyulear(...) with no outputs plots the PSD in the current figure
window. The frequency range on the plot is the same as the range of
output w (or f) for a given set of parameters.

Tips The power spectral density is computed as the distribution of power
per unit frequency.

This algorithm depends on your selecting an appropriate model order
for your signal.

Examples Yule-Walker AR PSD Estimate

Because the Yule-walker method estimates the spectral density by
fitting an AR prediction model of a given order to the signal, first
generate a signal from an AR (all-pole) model of a given order. You can
use freqz to check the magnitude of the frequency response of your AR
filter. This will give you an idea of what to expect when you estimate
the PSD using pyulear:

% AR filter coefficients
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a = [1 -2.2137 2.9403 -2.1697 0.9606];
% AR filter frequency response
freqz(1,a)
title('AR System Frequency Response')

Now generate the input signal x by filtering white noise through the
AR filter. Estimate the PSD of x based on a fourth-order AR prediction
model, since in this case, we know that the original AR system model a
has order 4:

x = filter(1,a,randn(256,1)); % AR system output
pyulear(x,4) % Fourth-order estimate

Large-Sample Confidence Intervals for AR PSD Estimate

This example shows you how to obtain and plot confidence intervals
for an AR PSD estimate.

Create the coefficients for an AR(2) system function. Use freqz to
obtain and plot the true power spectral density.

A = [1 -0.75 0.5];
[H,F] = freqz(1,A,[],1);
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plot(F,20*log10(abs(H)),'b','linewidth',2);
xlabel('Hz'); ylabel('dB/Hz');
title('True Power Spectral Density of AR(2) System Function')

Create a realization of the AR(2) process represented by the coefficients.
Set the random number generator to the default settings for
reproducible results. Obtain approximate large-sample 99%-confidence
intervals for the PSD estimate.

rng default;
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x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F,Pxxc] = pyulear(y,2,1024,1,'ConfidenceLevel',0.99);
plot(F,10*log10(Pxx),'b'); hold on;
plot(F,10*log10(Pxxc),'r'); xlabel('Hz'); ylabel('dB/Hz');
legend('PSD Estimate', '99%-Confidence Intervals')
title('PSD Estimate with 99%-Confidence Intervals')
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Algorithms Linear prediction filters can be used to model the second-order
statistical characteristics of a signal. The prediction filter output can be
used to model the signal when the input is white noise.

pyulear estimates the PSD of an input signal vector using the
Yule-Walker AR method. This method, also called the autocorrelation
or windowed method, fits an autoregressive (AR) linear prediction filter
model to the signal by minimizing the forward prediction error (based on
all observations of the in put sequence) in the least squares sense. This
formulation leads to the Yule-Walker equations, which are solved by the
Levinson-Durbin recursion. The spectral estimate returned by pyulear
is the squared magnitude of the frequency response of this AR model.

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988, pp. 194–195.

[2] Marple, S.L., Digital Spectral Analysis, Prentice-Hall, 1987,
Chapter 7.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997.

See Also aryule | lpc | pyulear | pcov | peig | periodogram | pmcov | pmtm |
pmusic | prony | pwelch
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Purpose Simulink subsystem block for filter

Syntax realizemdl(FiltObject)
realizemdl(FiltObject,propertyname1,propertyvalue1,...)

Description realizemdl(FiltObject) generates a model of the filter object
FiltObject in a Simulink subsystem block using sum, gain, and delay
blocks from Simulink. The properties and values of FiltObject define
the resulting subsystem block parameters.

realizemdl requires Simulink. To accurately realize models of
quantized filters, use Fixed-Point Designer.

realizemdl(FiltObject,propertyname1,propertyvalue1,...)
generates the model forFiltObject with the associated
propertyname/propertyvalue pairs, and any other values you set in
FiltObject.

Note Subsystem filter blocks that you use realizemdl to create
support sample-based input and output only. You cannot input or
output frame-based signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control
more fully the way the block subsystem model gets built, such as where
the block goes, what the name is, or how to optimize the block structure.
Valid properties and values for realizemdl are listed in this table, with
the default value noted and descriptions of what the properties do.
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Property Name Property Values Description

Destination 'current' (default) or
'new'or Subsystemname

Specify whether to
add the block to your
current Simulink model
or create a new model
to contain the block. If
you provide the name of
a current subsystem in
subsystemname, realizemdl
adds the new block to the
specified subsystem.

Blockname 'filter' (default) Provides the name for
the new subsystem block.
By default the block is
named ’filter’. To enter
a name for the block, use
the propertyvalue set to a
string ’blockname’.

MapCoeffstoPorts 'off' (default) or 'on' Specify whether to map the
coefficients of the filter to
the ports of the block.

MapStates 'off' (default) or 'on' Specifies whether to apply
the current filter states to
the realized model. This lets
you save states from a filter
object you may have used
or configured in a specific
way. The default setting of
'off' means the states are
not transferred to the model.
Setting the property to 'on'
preserves the current filter
states in the realized model.
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Property Name Property Values Description

OverwriteBlock 'off' or 'on' Specify whether to overwrite
an existing block with the
same name or create a new
block.

OptimizeZeros 'off' (default) or 'on' Specify whether to remove
zero-gain blocks.

OptimizeOnes 'off' (default) or 'on' Specify whether to replace
unity-gain blocks with direct
connections.

OptimizeNegOnes 'off' (default) or 'on' Specify whether to replace
negative unity-gain blocks
with a sign change at the
nearest sum block.

OptimizeDelayChains 'off' (default) or 'on' Specify whether to replace
cascaded chains of delay
blocks with a single integer
delay block to provide an
equivalent delay.

CoeffNames {'Num'} (default
FIR),{'Num','Den'}
(default direct form
IIR),{'Num','Den','g'}
(default IIR SOS), {'K'}
(default form lattice)

Specify the coefficient
variable names as
string variables in a cell
array.MapCoeffsToPorts
must be set to 'on' for this
property to apply.
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Property Name Property Values Description

InputProcessing 'columnsaschannels'
(default),
'elementsaschannels' , or
'inherited'

Specify frame-based
('columnsaschannels')
or sample-based
('elementsaschannels')
processing.

The Inherited (this
choice will be removed
- see release notes)
option will be removed
in a future release. For
more information, see “” for
frame-based processing in
the DSP System Toolbox
Release Notes.

RateOption 'enforcesinglerate'
(default) or
'allowmultirate'

Specify how the block
adjusts the rate at the
output to accommodate the
reduced number of samples.
This parameter applies only
when InputProcessing is
'columnsaschannels'.

Examples Realize Simulink model of lowpass Butterworth filter:

Hd = fdesign.lowpass('N,F3dB',4,0.25);
d = design(Hd,'butter');
realizemdl(d);

Realize Simulink model with coefficients mapped to ports:

Hd = fdesign.lowpass('N,F3dB',4,0.25);
d = design(Hd,'butter');
%Realize Simulink model and export coefficients
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realizemdl(d,'MapCoeffsToPorts','on');

In this case, the filter is an IIR filter with a direct form II second-order
sections structure. Setting MapCoeffstoPorts to 'on' exports the
numerator coefficients, the denominator coefficients, and the gains to
the MATLAB workspace using the default variable names Num, Den, and
g. Each column of Num and Den represents one second-order section. You
can modify the filter coefficients directly in the MATLAB workspace
providing tunability to the realized Simulink model.

See Also block | design | fdesign
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Purpose Convert reflection coefficients to autocorrelation sequence

Syntax r = rc2ac(k,r0)

Description r = rc2ac(k,r0) finds the autocorrelation coefficients, r, of the
output of the discrete-time prediction error filter from the lattice-form
reflection coefficients k and initial zero-lag autocorrelation r0.

Examples k = [0.3090 0.9800 0.0031 0.0082 -0.0082];
r0 = 0.1;
a = rc2ac(k,r0)

References [1] Kay, S.M., Modern Spectral Estimation, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

See Also ac2rc | poly2ac | rc2poly
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Purpose Convert reflection coefficients to inverse sine parameters

Syntax isin = is2rc(k)

Description isin = is2rc(k) returns a vector of inverse sine parameters isin
from a vector of reflection coefficients k.

Examples k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
isin = rc2is(k)

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, Discrete-Time
Processing of Speech Signals, Prentice-Hall, 1993.

See Also is2rc
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Purpose Convert reflection coefficients to log area ratio parameters

Syntax g = rc2lar(k)

Description g = rc2lar(k) returns a vector of log area ratio parameters g from a
vector of reflection coefficients k.

Examples k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
g = rc2lar(k)

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, Discrete-Time
Processing of Speech Signals, Prentice-Hall, 1993.

See Also lar2rc
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Purpose Convert reflection coefficients to prediction filter polynomial

Syntax a = rc2poly(k)
[a,efinal] = rc2poly(k,r0)

Description a = rc2poly(k) converts the reflection coefficients k corresponding to
the lattice structure to the prediction filter polynomial a, with a(1) = 1.
The output a is row vector of length length(k)+1.

[a,efinal] = rc2poly(k,r0) returns the final prediction error
efinal based on the zero-lag autocorrelation, r0.

Examples Consider a lattice IIR filter given by reflection coefficients k:

k = [0.3090 0.9800 0.0031 0.0082 -0.0082];

Its equivalent prediction filter representation is given by

a = rc2poly(k)

Algorithms rc2poly computes output a using Levinson’s recursion [1]. The function

1 Sets the output vector a to the first element of k.

2 Loops through the remaining elements of k.

For each loop iteration i, a = [a + a(i-1:-1:1)*k(i) k(i)].

3 Implements a = [1 a].

References [1] Kay, S.M., Modern Spectral Estimation, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

See Also ac2poly | latc2tf | latcfilt | poly2rc | rc2ac | rc2is | rc2lar
| tf2latc
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Purpose Real cepstrum and minimum phase reconstruction

Syntax rceps(x)
[y,ym] = rceps(x)

Description The real cepstrum is the inverse Fourier transform of the real logarithm
of the magnitude of the Fourier transform of a sequence.

Note rceps only works on real data.

rceps(x) returns the real cepstrum of the real sequence x. The real
cepstrum is a real-valued function.

[y,ym] = rceps(x) returns both the real cepstrum y and a minimum
phase reconstructed version ym of the input sequence.

Algorithms rceps is an implementation of algorithm 7.2 in [2], that is,

y = real(ifft(log(abs(fft(x)))));

Appropriate windowing in the cepstral domain forms the reconstructed
minimum phase signal:

w = [1;2*ones(n/2-1,1);ones(1-rem(n,2),1);zeros(n/2-1,1)];
ym = real(ifft(exp(fft(w.*y))));

References [1] Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing,
Englewood Cliffs, NJ, Prentice-Hall, 1975.

[2] Programs for Digital Signal Processing, IEEE Press, New York,
1979.

See Also cceps | fft | hilbert | icceps | unwrap
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Purpose Sampled aperiodic rectangle

Syntax y = rectpuls(t)
y = rectpuls(t,w)

Description y = rectpuls(t) returns a continuous, aperiodic, unity-height
rectangular pulse at the sample times indicated in array t, centered
about t = 0 and with a default width of 1. Note that the interval
of non-zero amplitude is defined to be open on the right, that is,
rectpuls(-0.5) = 1 while rectpuls(0.5) = 0.

y = rectpuls(t,w) generates a rectangle of width w.

rectpuls is typically used in conjunction with the pulse train
generating function pulstran.

See Also chirp | cos | diric | gauspuls | pulstran | sawtooth | sin | sinc
| square | tripuls
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Purpose Rectangular window

Syntax w = rectwin(L)

Description w = rectwin(L) returns a rectangular window of length L in the
column vector w. This function is provided for completeness; a
rectangular window is equivalent to no window at all.

Algorithms w = ones(L,1);

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

See Also barthannwin | bartlett | blackmanharris | bohmanwin | nuttallwin
| parzenwin | triang | window | wintool | wvtool
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Purpose Change sampling rate by rational factor

Syntax y = resample(x,p,q)
y = resample(x,p,q,n)
y = resample(x,p,q,n,beta)
y = resample(x,p,q,b)
[y,b] = resample(x,p,q)

Description y = resample(x,p,q) resamples the sequence in vector x at p/q times
the original sampling rate, using a polyphase filter implementation.
p and q must be positive integers. The length of y is equal to
ceil(length(x)*p/q). If x is a matrix, resample works down the
columns of x.

resample applies an anti-aliasing (lowpass) FIR filter to x during the
resampling process. It designs the filter using firls with a Kaiser
window.

y = resample(x,p,q,n) uses n terms on either side of the current
sample, x(k), to perform the resampling. The length of the FIR filter
resample uses is proportional to n; larger values of n provide better
accuracy at the expense of more computation time. The default for n is
10. If you let n = 0, resample performs a nearest-neighbor interpolation

y(k) = x(round((k-1)*q/p)+1)

where y(k) = 0 if the index to x is greater than length(x).

y = resample(x,p,q,n,beta) uses beta as the design parameter for
the Kaiser window that resample employs in designing the lowpass
filter. The default for beta is 5.

y = resample(x,p,q,b) filters x using the vector of filter coefficients b.

[y,b] = resample(x,p,q) returns the vector b, which contains the
coefficients of the filter applied to x during the resampling process.
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Examples Resample a simple linear sequence at 3/2 the original rate:

fs1 = 10; % Original sampling frequency in Hz
t1 = 0:1/fs1:1; % Time vector
x = t1; % Define a linear sequence
y = resample(x,3,2); % Now resample it
t2 = (0:(length(y)-1))*2/(3*fs1); % New time vector
plot(t1,x,'*',t2,y,'o',-0.5:0.01:1.5,-0.5:0.01:1.5,':')
legend('original','resampled'); xlabel('Time')

Notice that the last few points of the output y are inaccurate. In its
filtering process, resample assumes the samples at times before and
after the given samples in x are equal to zero. Thus large deviations
from zero at the end points of the sequence x can cause inaccuracies in
y at its end points. The following two plots illustrate this side effect
of resample:

x = [1:10 9:-1:1]; y = resample(x,3,2);
subplot(2,1,1);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o');
title('Edge Effects Not Noticeable');
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legend('original','resampled');
x = [10:-1:1 2:10]; y = resample(x,3,2);
subplot(2,1,2);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o')
title('Edge Effects Very Noticeable');
legend('original','resampled');

Algorithms resample performs an FIR design using firls, followed by rate
changing implemented with upfirdn.

See Also decimate | downsample | firls | interp | interp1 | intfilt |
kaiser | mfilt | spline | upfirdn | upsample
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Purpose z-transform partial-fraction expansion

Syntax [r,p,k] = residuez(b,a)
[b,a] = residuez(r,p,k)

Description residuez converts a discrete time system, expressed as the ratio of
two polynomials, to partial fraction expansion, or residue, form. It also
converts the partial fraction expansion back to the original polynomial
coefficients.

Note Numerically, the partial fraction expansion of a ratio of
polynomials is an ill-posed problem. If the denominator polynomial is
near a polynomial with multiple roots, then small changes in the data,
including roundoff errors, can cause arbitrarily large changes in the
resulting poles and residues. You should use state-space (or pole-zero
representations instead.

[r,p,k] = residuez(b,a) finds the residues, poles, and direct terms
of a partial fraction expansion of the ratio of two polynomials, b(z) and
a(z). Vectors b and a specify the coefficients of the polynomials of the
discrete-time system b(z)/a(z) in descending powers of z.
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The returned column vector r contains the residues, column vector p
contains the pole locations, and row vector k contains the direct terms.
The number of poles is
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n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector k is empty if length(b) is less than
length(a); otherwise:

length(k) = length(b) - length(a) + 1

If p(j) = ... = p(j+s-1) is a pole of multiplicity s, then the
expansion includes terms of the form
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[b,a] = residuez(r,p,k) with three input arguments and two output
arguments, converts the partial fraction expansion back to polynomials
with coefficients in row vectors b and a.

The residue function in the standard MATLAB language is very
similar to residuez. It computes the partial fraction expansion of
continuous-time systems in the Laplace domain (see reference [1]),
rather than discrete-time systems in the z-domain as does residuez.

Algorithms residuez applies standard MATLAB functions and partial fraction
techniques to find r, p, and k from b and a. It finds

• The direct terms a using deconv (polynomial long division) when
length(b) > length(a)-1.

• The poles using p = roots(a).

• Any repeated poles, reordering the poles according to their
multiplicities.

• The residue for each nonrepeating pole pi by multiplying b(z)/a(z) by
1/(1 - piz−1) and evaluating the resulting rational function at z = pi.

• The residues for the repeated poles by solving

S2*r2 = h - S1*r1
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for r2 using \. h is the impulse response of the reduced b(z)/a(z), S1
is a matrix whose columns are impulse responses of the first-order
systems made up of the nonrepeating roots, and r1 is a column
containing the residues for the nonrepeating roots. Each column of
matrix S2 is an impulse response. For each root pj of multiplicity sj,
S2 contains sj columns representing the impulse responses of each
of the following systems.

1

1

1

1

1

11 1 2 1− − −− − −pjz pjz pjz sj
,
( )

, ,
( )



The vector h and matrices S1 and S2 have n + xtra rows, where n
is the total number of roots and the internal parameter xtra, set
to 1 by default, determines the degree of over-determination of the
system of equations.

References [1] Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1975, pp. 166-170.

See Also convmtx | deconv | poly | prony | residue | roots | ss2tf | tf2ss |
tf2zp | tf2zpk | zp2ss
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Purpose Rise time of positive-going bilevel waveform transitions

Syntax R = risetime(X)
R = risetime(X,FS)
R = risetime(X,T)
[R,LT,UT] = risetime(...)
[R,LT,UT,LL,UL] = risetime(...)
[...] = risetime(...,Name,Value)
risetime(...)

Description R = risetime(X) returns a vector, R, containing the time each
transition of the input bilevel waveform, X, takes to cross from the
10% to 90% reference levels. To determine the transitions, risetime
estimates the state levels of the input waveform by a histogram method.
risetime identifies all regions that cross the upper-state boundary
of the low state and the lower-state boundary of the high state. The
low-state and high-state boundaries are expressed as the state level
plus or minus a multiple of the difference between the state levels.
See “State-Level Tolerances” on page 1-913. Because risetime uses
interpolation, R may contain values that do not correspond to sampling
instants of the bilevel waveform, X.

R = risetime(X,FS) specifies the sampling frequency in hertz. The
sampling frequency determines the sample instants corresponding to
the elements in X. The first sample instant in X corresponds to t=0.
Because risetime uses interpolation, R may contain values that do not
correspond to sampling instants of the bilevel waveform, X.

R = risetime(X,T) specifies the sample instants, T, as a vector with
the same number of elements as X.

[R,LT,UT] = risetime(...) returns vectors, LT and UT, whose
elements correspond to the time instants where X crosses the lower-
and upper-percent reference levels.

[R,LT,UT,LL,UL] = risetime(...) returns the levels, LL and UL,
that correspond to the lower- and upper-percent reference levels.

1-908



risetime

[...] = risetime(...,Name,Value) returns the rise times
with additional options specified by one or more Name,Value pair
arguments.

risetime(...) plots the signal and darkens the regions of each
transition where rise time is computed. The plot marks the lower and
upper crossings and the associated reference levels. The state levels
and the corresponding associated lower- and upper-state boundaries
are also plotted.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’PctRefLevels’

Reference levels as a percentage of the waveform amplitude. The
low-state level is defined to be 0 percent. The high-state level is defined
to be 100 percent. The value of 'PCTREFLEVELS' is a two-element real
row vector whose elements correspond to the lower and upper percent
reference levels.

Default: [10 90]

’StateLevels’

Low- and high-state levels. Specifies the levels to use for the low- and
high-state levels as a 2-element real row vector. The first element is the
low-state level. The second element is the high-state level.
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’Tolerance’

Tolerance levels (lower- and upper-state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-913.

Default: 2

Output
Arguments

R

Rise times. R is a vector containing the duration of each positive-going
transition. If you specify the sampling rate, FS, or the sampling
instants, T, rise times are in seconds. If you do not specify a sampling
rate, or sampling instants, rise times are in samples.

LT

Instants when positive-going transition crosses the lower-reference
level. By default, the lower reference level is the 10% reference level.
The upper reference level is the 90% reference level. You can change the
default reference levels by specifying the 'PctRefLevels' name-value
pair.

UT

Instants when positive-going transition crosses the upper-reference
level. By default, the lower reference level is the 10% reference level.
The upper reference level is the 90% reference level. You can change the
default reference levels by specifying the 'PctRefLevels' name-value
pair.

LL

Lower reference level in waveform amplitude units.LL is a vector
containing the waveform value corresponding to the lower reference
level in each positive-going transition. By default, the lower reference
level is the 10% reference level. You can change the default reference
levels by specifying the 'PctRefLevels' name-value pair.

UL
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Upper reference level in waveform amplitude units. LL is a vector
containing the waveform value corresponding to the upper reference
level in each positive-going transition. By default, the upper reference
level is the 90% reference level. You can change the default reference
levels by specifying the 'PctRefLevels' name-value pair.

Definitions Positive-Going Transition

A positive-going transition in a bilevel waveform is a transition
from the low-state level to the high-state level. A positive-polarity
(positive-going) pulse has a terminating state more positive than the
originating state. If the waveform is differentiable in the neighborhood
of the transition, an equivalent definition is a transition with a positive
first derivative. The following figure shows a positive-going transition.
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In the preceding figure, the amplitude values of the waveform do not
appear because a positive-going transition does not depend on the
actual waveform values. A positive-going transition is defined by the
direction of the transition.

Percent Reference Levels

If S1 is the low state, S2 is the high state, and U is the upper-percent
reference level. The waveform value corresponding to the upper percent
reference level is
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S
U

S S1 2 1100
 ( )

If L is the lower-percent reference level, the waveform value
corresponding to the lower percent reference level is

S
L

S S1 2 1100
 ( )

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Rise Time in a Bilevel Waveform

Determine the rise time in samples for a 2.3 V clock waveform.
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Load the 2.3 V clock data. Determine the rise time in samples. Use the
default [10 90] percent reference levels.

load('transitionex.mat','x');
R = risetime(x);

The rise time is less than 1, indicating that the transition occurred
in a fraction of a sample.

Rise Time with 20% and 80% Reference Levels

Determine the rise time in a 2.3 V clock waveform sampled at 4 MHz.
Compute the rise time using the 20% and 80% reference levels.

Load the 2.3 V clock data with sampling instants. Plot the waveform.

load('transitionex.mat','x','t');
plot(t,x);

Determine the rise time using the 20% and 80% reference levels.

R = risetime(x,'PctRefLevels',[20 80]);

Rise Time, Reference-Level Instants, and Reference Levels

Determine the rise time, reference-level instants, and reference levels
in a 2.3 V clock waveform sampled at 4 MHz.

Load the 2.3 V clock waveform along with the sampling instants.

load('transitionex.mat','x','t');

Determine the rise time, reference-level instants, and reference levels.

[R,LT,UT,LL,UL] = risetime(x,t);

Plot the waveform in microseconds with the lower- and upper-reference
levels and reference-level instants. Show that the rise time is the
difference between the upper- and lower-reference level instants.

plot(t.*1e6,x);
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xlabel('microseconds'); ylabel('Volts');
hold on; grid on;
plot(LT.*1e6,LL,'ro','markerfacecolor',[1 0 0]);
plot(UT.*1e6,UL,'ro','markerfacecolor',[1 0 0]);
fprintf('Rise time is %1.4f microseconds.\n',(UT-LT)*1e6)

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003, pp. 15–17.

See Also falltime | slewrate | statelevels
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Purpose Reverse Levinson-Durbin recursion

Syntax r = rlevinson(a,efinal)
[r,u] = rlevinson(a,efinal)
[r,u,k] = rlevinson(a,efinal)
[r,u,k,e] = rlevinson(a,efinal)

Description The reverse Levinson-Durbin recursion implements the step-down
algorithm for solving the following symmetric Toeplitz system of linear
equations for r, where r = [r(1) Lr(p+1)] and r(i)* denotes the complex
conjugate of r(i).
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r = rlevinson(a,efinal) solves the above system of equations for
r given vector a, where a = [1 a(2) L a(p+1)]. In linear prediction
applications, r represents the autocorrelation sequence of the input
to the prediction error filter, where r(1) is the zero-lag element. The
figure below shows the typical filter of this type, where H(z) is the

optimal linear predictor, x(n) is the input signal, ˆ( )x n is the predicted
signal, and e(n) is the prediction error.
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Input vector a represents the polynomial coefficients of this prediction
error filter in descending powers of z.

A z a z a n z p( ) ( ) ( )= + + + +− −1 2 11 

The filter must be minimum phase to generate a valid autocorrelation
sequence. efinal is the scalar prediction error power, which is equal to
the variance of the prediction error signal, σ2(e).

[r,u] = rlevinson(a,efinal) returns upper triangular matrix U
from the UDU* decomposition
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and E is a diagonal matrix with elements returned in output e (see
below). This decomposition permits the efficient evaluation of the
inverse of the autocorrelation matrix, R−1.

Output matrix u contains the prediction filter polynomial, a, from each
iteration of the reverse Levinson-Durbin recursion

U

a a a p

a a p

a p

p

p

p
=

+

−

∗ ∗
+

∗

∗
+

∗

+
∗

1 2 1

2 1

1

1 2 1

0 1

0 0 1

( ) ( ) ( )

( ) ( )

( )







   

00 0 11 ap+
∗

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥( )

1-918



rlevinson

where ai(j) is the jth coefficient of the ith order prediction filter
polynomial (i.e., step i in the recursion). For example, the 5th order
prediction filter polynomial is

a5 = u(5:-1:1,5)'

Note that u(p+1:-1:1,p+1)' is the input polynomial coefficient
vector a.

[r,u,k] = rlevinson(a,efinal) returns a vector k of length (p+1)
containing the reflection coefficients. The reflection coefficients are the
conjugates of the values in the first row of u.

k = conj(u(1,2:end))

[r,u,k,e] = rlevinson(a,efinal) returns a vector of length p+1
containing the prediction errors from each iteration of the reverse
Levinson-Durbin recursion: e(1) is the prediction error from the
first-order model, e(2) is the prediction error from the second-order
model, and so on.

These prediction error values form the diagonal of the matrix E in the
UDU* decomposition of R−1.

R UE U− − ∗=1 1

References [1] Kay, S.M., Modern Spectral Estimation: Theory and Application,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

See Also levinson | lpc | prony | stmcb
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Purpose Root-mean-square level

Syntax Y = rms(X)
Y = rms(X,DIM)

Description Y = rms(X) returns the root-mean-square (RMS) level of the input, X.
If X is a row or column vector, Y is a real-valued scalar. For matrices,
Y contains the RMS levels computed along the first nonsingleton
dimension. For example, if X is an N-by-M matrix with N>1, Y is a
1-by-M row vector containing the RMS levels of the columns of X.

Y = rms(X,DIM) computes the RMS level of X along the dimension, DIM.

Input
Arguments

X

Real or complex-valued input vector or matrix. By default, rms acts
along the first nonsingleton dimension of X.

DIM

Dimension for RMS levels. The optional DIM input argument specifies
the dimension along which to compute the RMS levels.

Default: First nonsingleton dimension

Output
Arguments

Y

Root-mean-square level. For vectors, Y is a real-valued scalar. For
matrices, Y contains the RMS levels computed along the specified
dimension DIM. By default, DIM is the first nonsingleton dimension.

Definitions Root-Mean-Square Level

The root-mean-square level of a vector, X, is

X X
N

n

N

nRMS 

1

1

2| |
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with the summation performed along the specified dimension.

Examples RMS Level of Sinusoid

Compute the RMS level of a 100-Hz sinusoid sampled at 1 kHz.

t = 0:0.001:1-0.001;
X = cos(2*pi*100*t);
Y = rms(X);

RMS Levels of 2-D Matrix

Create a matrix where each column is a 100-Hz sinusoid sampled at 1
kHz with a different amplitude. The amplitude is equal to the column
index.

Compute the RMS levels of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)';
X = repmat(x,1,4);
amp = 1:4;
amp = repmat(amp,1e3,1);
X = X.*amp;
Y = rms(X);

RMS Levels of 2-D Matrix Along Specified Dimension

Create a matrix where each row is a 100-Hz sinusoid sampled at 1 kHz
with a different amplitude. The amplitude is equal to the row index.

Compute the RMS levels of the rows specifying the dimension equal to
2 with the DIM argument.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);
X = repmat(x,4,1);
amp = (1:4)';
amp = repmat(amp,1,1e3);
X = X.*amp;
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Y = rms(X,2);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Std 181, 2003.

See Also mean | peak2rms | std
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Purpose Frequency and power content using eigenvector method

Syntax [w,pow] = rooteig(x,p)
[f,pow] = rooteig(...,fs)
[w,pow] = rooteig(...,'corr')

Description [w,pow] = rooteig(x,p) estimates the frequency content in the
time samples of a signal x, and returns w, a vector of frequencies in
rad/sample, and the corresponding signal power in the vector pow in
units of power, such as volts^2. The input signal x is specified either as:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of
an array of sensors, as in array processing), such that x'*x is an
estimate of the correlation matrix

Note You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of
p, represents a threshold that is multiplied by λmin, the smallest
estimated eigenvalue of the signal’s correlation matrix. Eigenvalues
below the threshold λmin*p(2) are assigned to the noise subspace.
In this case, p(1) specifies the maximum dimension of the signal
subspace.

The extra threshold parameter in the second entry in p provides you
more flexibility and control in assigning the noise and signal subspaces.

The length of the vector w is the computed dimension of the signal
subspace. For real-valued input data x, the length of the corresponding
power vector pow is given by
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length(pow) = 0.5*length(w)

For complex-valued input data x, pow and w have the same length.

[f,pow] = rooteig(...,fs) returns the vector of frequencies f
calculated in Hz. You supply the sampling frequency fs in Hz. If you
specify fs with the empty vector [], the sampling frequency defaults
to 1 Hz.

[w,pow] = rooteig(...,'corr') forces the input argument x to be
interpreted as a correlation matrix rather than a matrix of signal data.
For this syntax, you must supply a square matrix for x, and all of its
eigenvalues must be nonnegative.

Note You can place the string 'corr' anywhere after p.

Examples Find the frequency content in a signal composed of three complex
exponentials in noise. Use the modified covariance method to estimate
the correlation matrix used by the eigenvector method:

n=0:99;
s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+...

exp(i*pi/3*n)+randn(1,100);
% Estimate correlation matrix using
% modified covariance method.
X=corrmtx(s,12,'mod');
[W,P] = rooteig(X,3)

Algorithms The eigenvector method used by rooteig is the same as that used
by peig. The algorithm performs eigenspace analysis of the signal’s
correlation matrix in order to estimate the signal’s frequency content.

The difference between peig and rooteig is:

• peig returns the pseudospectrum at all frequency samples.
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• rooteig returns the estimated discrete frequency spectrum, along
with the corresponding signal power estimates.

rooteig is most useful for frequency estimation of signals made up of a
sum of sinusoids embedded in additive white Gaussian noise.

See Also corrmtx | peig | pmusic | spectrum | rootmusic |
spectrum.eigenvector

1-925



rootmusic

Purpose Root MUSIC algorithm

Syntax W = rootmusic(X,P)
[W,POW] = rootmusic(X,P)
[F, POW] = rootmusic(...,Fs)
[W,POW] = rootmusic(...,'corr')

Description W = rootmusic(X,P) returns the frequencies in radians/sample for the
P complex exponentials (sinusoids) that make up the signal X.

The input X is specified either as:

• A row or column vector representing one realization of signal

• A rectangular array for which each row of X represents a separate
observation of the signal (for example, each row is one output of
an array of sensors, as in array processing), such that X'*X is an
estimate of the correlation matrix

Note You can use the output of corrmtx to generate such an array X.

[W,POW] = rootmusic(X,P) returns the estimated absolute value
squared amplitudes of the sinusoids at the frequencies W.

The second input argument, P is the number of complex sinusoids in X.
You can specify P as either:

• A positive integer. In this case, the signal subspace dimension is P.

• A two-element vector. In this case, P(2), the second element of
P, represents a threshold that is multiplied by λmin, the smallest
estimated eigenvalue of the signal’s correlation matrix. Eigenvalues
below the threshold λmin*P(2) are assigned to the noise subspace.
In this case, P(1) specifies the maximum dimension of the signal
subspace.

The extra threshold parameter in the second entry in P provides you
more flexibility and control in assigning the noise and signal subspaces.

1-926



rootmusic

The length of the vector W is the computed dimension of the signal
subspace. For real-valued input data X, the length of the corresponding
power vector POW is given by

length(POW) = 0.5*length(W)

For complex-valued input data X, POW and W have the same length.

[F, POW] = rootmusic(...,Fs) returns the vector of frequencies F
calculated in Hz. You supply the sampling frequency Fs in Hz. If you
specify Fs with the empty vector [], the sampling frequency defaults
to 1 Hz.

[W,POW] = rootmusic(...,'corr') forces the input argument X to be
interpreted as a correlation matrix rather than a matrix of signal data.
For this syntax, you must supply a square matrix for X, and all of its
eigenvalues must be nonnegative.

Note You can place the string 'corr' anywhere after P.

Examples Estimate the amplitudes for 2 sinusoids in noise. The separation
between the sinusoids is less than the resolution of the periodogram,
2π/N radians/sample.

s1 = RandStream.create('mrg32k3a');
n=0:99; % N is equal to 100. Periodogram resolution is (2*pi)/100
freqs = [pi/4 pi/4+0.06];
s = 2*exp(1j*freqs(1)*n)+1.5*exp(1j*freqs(2)*n)+...
0.5*randn(s1,1,100)+1j*0.5*randn(s1,1,100);
X = corrmtx(s,12,'mod');
[W,P] = rootmusic(X,2);

Algorithms The MUSIC algorithm used by rootmusic is the same as that used by
pmusic. The algorithm performs eigenspace analysis of the signal’s
correlation matrix in order to estimate the signal’s frequency content.
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The difference between pmusic and rootmusic is:

• pmusic returns the pseudospectrum at all frequency samples.

• rootmusic returns the estimated discrete frequency spectrum, along
with the corresponding signal power estimates.

rootmusic is most useful for frequency estimation of signals made up of
a sum of sinusoids embedded in additive white Gaussian noise.

Diagnostics If the input signal, x is real and an odd number of sinusoids, p is
specified, this error message is displayed

Real signals require an even number p of complex sinusoids.

See Also corrmtx | peig | pmusic | spectrum | rooteig | spectrum.music
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Purpose Root-sum-of-squares level

Syntax Y = rssq(X)
Y = rssq(X,DIM)

Description Y = rssq(X) returns the root-sum-of-squares (RSS) level, Y, of the
input, X. If X is a row or column vector, Y is a real-valued scalar.
For matrices, Y contains the RSS levels computed along the first
nonsingleton dimension. For example, if Y is an N-by-M matrix with
N>1, Y is a 1-by-M row vector containing the RSS levels of the columns
of Y.

Y = rssq(X,DIM) computes the RSS level of X along the dimension,
DIM.

Input
Arguments

X

Real- or complex-valued input vector or matrix. By default, rssq acts
along the first nonsingleton dimension of X.

DIM

Dimension for root-sum-of-squares (RSS) level. The optional DIM input
argument specifies the dimension along which to compute the RSS level.

Default: First nonsingleton dimension

Output
Arguments

Y

Root-sum-of-squares level. For vectors, Y is a real-valued scalar. For
matrices, Y contains the RSS levels computed along the specified
dimension, DIM. By default, DIM is the first nonsingleton dimension.

Definitions Root-Sum-of-Squares Level

The root-sum-of-squares (RSS) level of a vector, X, is
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X X
n

N

nRSS 

| |

1

2

with the summation performed along the specified dimension. The RSS
is also referred to as the ℓ2 norm.

Examples RSS Level of Sinusoid

Compute the RSS level of a 100-Hz sinusoid sampled at 1 kHz.

t = 0:0.001:1-0.001;
X = cos(2*pi*100*t);
Y = rssq(X);

RSS Level of 2-D Matrix

Create a matrix where each column is a 100-Hz sinusoid sampled at 1
kHz with a different amplitude. The amplitude is equal to the column
index.

Compute the RSS level of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)';
X = repmat(x,1,4);
amp = 1:4;
amp = repmat(amp,1e3,1);
X = X.*amp;
Y = rssq(X);

RSS Level of 2-D Matrix Along Specified Dimension

Create a matrix where each row is a 100-Hz sinusoid sampled at 1 kHz
with a different amplitude. The amplitude is equal to the row index.

Compute the RSS level of the rows specifying the dimension equal to
2 with the DIM argument.

t = 0:0.001:1-0.001;
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x = cos(2*pi*100*t);
X = repmat(x,4,1);
amp = (1:4)';
amp = repmat(amp,1,1e3);
X = X.*amp;
Y = rssq(X,2);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.
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Purpose Sawtooth or triangle wave

Syntax sawtooth(t)
sawtooth(t,width)

Description sawtooth(t) generates a sawtooth wave with period 2π for the
elements of time vector t. sawtooth(t) is similar to sin(t), but creates
a sawtooth wave with peaks of -1 and 1 instead of a sine wave. The
sawtooth wave is defined to be -1 at multiples of 2π and to increase
linearly with time with a slope of 1/π at all other times.

sawtooth(t,width) generates a modified triangle wave where width, a
scalar parameter between 0 and 1, determines the point between 0 and
2π at which the maximum occurs. The function increases from -1 to 1 on
the interval 0 to 2π*width, then decreases linearly from 1 to -1 on the
interval 2π*width to 2π. Thus a parameter of 0.5 specifies a standard
triangle wave, symmetric about time instant π with peak-to-peak
amplitude of 1. sawtooth(t,1) is equivalent to sawtooth(t).

See Also chirp | cos | diric | gauspuls | pulstran | rectpuls | sin | sinc
| square | tripuls
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Purpose Compute reflection coefficients from autocorrelation sequence

Syntax k = schurrc(r)
[k,e] = schurrc(r)

Description k = schurrc(r) uses the Schur algorithm to compute a vector k of
reflection coefficients from a vector r representing an autocorrelation
sequence. k and r are the same size. The reflection coefficients
represent the lattice parameters of a prediction filter for a signal with
the given autocorrelation sequence, r. When r is a matrix, schurrc
treats each column of r as an independent autocorrelation sequence,
and produces a matrix k, the same size as r. Each column of k
represents the reflection coefficients for the lattice filter for predicting
the process with the corresponding autocorrelation sequence r.

[k,e] = schurrc(r) also computes the scalar e, the prediction error
variance. When r is a matrix, e is a column vector. The number of rows
of e is the same as the number of columns of r.

Examples Create an autocorrelation sequence from the MATLAB speech signal
contained in mtlb.mat, and use the Schur algorithm to compute the
reflection coefficients of a lattice prediction filter for this autocorrelation
sequence:

load mtlb
r = xcorr(mtlb(1:5),'unbiased');
k = schurrc(r(5:end))
k =

-0.7583
0.1384
0.7042

-0.3699

References [1] Proakis, J. and D. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Third edition, Prentice-Hall, 1996,
pp. 868-873.
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See Also levinson
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Purpose Settling time for bilevel waveform

Syntax S = settlingtime(X,D)
S = settlingtime(X,FS,D)
S = settlingtime(X,T,D)
[S,SLEV,SINST] = settlingtime(...)
[S,SLEV,SINST] = settlingtime(...,Name,Value)
settlingtime(...)

Description S = settlingtime(X,D) returns the time, S, from the mid-reference
level instant to the time instant each transition enters and remains
within a 2% tolerance region of the final state over the duration, D.
D is a positive scalar. Because settlingtime uses interpolation to
determine the mid-reference level instant, S may contain values that
do not correspond to sampling instants. The length of S is equal to
the number of detected transitions in the input signal, X. If for any
transition, the level of the waveform does not remain within the lower
and upper tolerance boundaries, the requested duration is not present,
or an intervening transition is detected, settlingtime marks the
corresponding element in S as NaN. See “Settle Seek Duration” on page
1-940 for cases in which settlingtime returns a NaN. To determine
the transitions, settlingtime estimates the state levels of the input
waveform by a histogram method. settlingtime identifies all regions
that cross the upper-state boundary of the low state and the lower-state
boundary of the high state. The low-state and high-state boundaries are
expressed as the state level plus or minus a multiple of the difference
between the state levels. See “State-Level Tolerances” on page 1-939.

S = settlingtime(X,FS,D) specifies the sampling rate for the
bilevel waveform, X in hertz. The first sample instant in X is equal
to t=0. Because settlingtime uses interpolation to determine the
mid-reference level instant, Smay contain values that do not correspond
to sampling instants.

S = settlingtime(X,T,D) specifies the sample instants, T, as a vector
with the same number of elements as X.

1-935



settlingtime

[S,SLEV,SINST] = settlingtime(...) returns vectors, SLEV, and
SINST, whose elements correspond to the levels and sample instants of
the settling points for each transition.

[S,SLEV,SINST] = settlingtime(...,Name,Value) returns the
settling times, levels, and corresponding sample instants with additional
options specified by one or more Name,Value pair arguments.

settlingtime(...) plots the signal and darkens the regions of each
transition where settling time is computed. The plot marks the location
of the settling time of each transition, the mid-crossings, and the
associated reference levels. The plot also displays the state levels with
the corresponding lower and upper tolerance boundaries.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

D

Settle-seek duration. D is a positive scalar, which defines the duration
after the mid-reference level instant that settlingtime looks for
a settling time. If no settling time occurs in D seconds after the
mid-reference level instant, settlingtime returns a NaN. See “Settling
Time” on page 1-937 and “Settle Seek Duration” on page 1-940.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’MidPct’

Mid-reference level as a percentage of the waveform amplitude. See
“Mid-Reference Level” on page 1-938.
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Default: 50

’StateLevels’

Low and high-state levels. StateLevels is a 1-by-2 real-valued
vector. The first element is the low-state level. The second element is
the high-state level. If you do not specify low and high-state levels,
settlingtime estimates the state levels from the input waveform using
the histogram method.

’Tolerance’

Tolerance levels (lower and upper state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-939.

Default: 2

Output
Arguments

S

The time from the mid-reference level instant to the time instant each
transition enters and remains within a 2% tolerance region of the final
state over duration, D.

SLEV

Waveform values at the settling points.

SINST

Time instants of the settling points.

Definitions Settling Time

The settling time is the time after the mid-reference level instant when
the signal crosses into and remains in the 2%-tolerance region around
the state level. The settling time is illustrated in the following figure.
The low- and high-state levels are the dashed black lines. The 2%
tolerances above and below the state levels are shown by the red dashed
lines and the settling time is indicated by the yellow circle.

1-937



settlingtime

Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S_1,
and high- state level, S_2, is

S S S1 2 1
1
2

 ( )

Mid-Reference Level Instant

Let y50% denote the mid reference level.
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Let t50%-
and t50%+

denote the two consecutive sampling instants
corresponding to the waveform values nearest in value to y50%.

Let y50%-
and y50%+

denote the waveform values at t50%-
and t50%+

.

The mid-reference level instant is

t t
t t

y y
y y50 50

50 50

50 50
50 50% %

% %

% %
% %( )( ) 




 

 

 

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The
estimated state levels are indicated by a dashed red line.

1-939



settlingtime

Settle Seek Duration

The settle seek duration defines the interval of time after the
mid-reference level instant that settlingtime looks for a settling point.
If settlingtime does not find a settling point within the settle seek
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duration, settlingtime returns NaN for the settling time. The following
figure illustrates a settle seek duration of 10 samples.

settlingtime may fail to find a settling point in the specified settle
seek duration if any one of the following conditions occurs:

• The last waveform value in the settle seek interval is not within
the upper- and lower-state boundaries determined by the specified
tolerance. The following figure illustrates this condition for a settle
seek duration of 8 samples and a 2% tolerance region.
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In the preceding figure, you see that the last sample in the settle
seek interval exceeds the upper state boundary. In this example,
reducing or increasing the settle seek duration can result in a valid
settling time.

• There is an insufficient number of waveform samples for the specified
settle seek duration. The following figure illustrates this condition
for a settle seek duration of 20 samples. The settle seek duration
extends beyond the final sample of the waveform.
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• An intervening transition is detected before the end of the specified
settle seek duration. The following figure illustrates this condition
for a settle seek duration of 22 samples. An intervening transition is
detected before the end of the 22–sample settle seek duration.
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Examples Determine Settling Point and Settling Level

Determine the settling point and corresponding waveform value for a
bilevel waveform. Plot the waveform and mark the settling point.

load('transitionex.mat', 'x');
[S,SLEV,SINST] = settlingtime(x,10);
plot(x); hold on;
plot(SINST,SLEV,'ro','markerfacecolor',[1 0 0]);
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Determine Settling Points for a Three-Transition Bilevel
Waveform

Determine the settling points for a three-transition bilevel waveform.
The data is sampled at 4 MHz. Use a one-microsecond settle-seek
duration. Plot the settling points.

load('transitionex.mat', 'x');
y = [x; fliplr(x)];
fs = 4e6;
t = 0:1/fs:(length(y)*1/fs)-1/fs;
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[S,SLEV,SINST] = settlingtime(y,fs,1e-6);
% equivalent to [S,SLEV,SINST] = settlingtime(y,t);
plot(t,y); hold on;
plot(SINST,SLEV,'ro','markerfacecolor',[1 0 0]);
legend('Bilevel Waveform','Settling Points','Location','SouthWest');

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003, pp. 23–24.

See Also falltime | midcross | pulsewidth | risetime | statelevels
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Purpose Compute period of sequence

Syntax p = seqperiod(x)
[p,num] = seqperiod(x)

Description p = seqperiod(x) returns the integer p that corresponds to the period
of the sequence in a vector x. The period p is computed as the minimum
length of a subsequence x(1:p) of x that repeats itself continuously
every p samples in x. The length of x does not have to be a multiple of
p, so that an incomplete repetition is permitted at the end of x. If the
sequence x is not periodic, then p = length(x).

• If x is a matrix, then seqperiod checks for periodicity along each
column of x. The resulting output p is a row vector with the same
number of columns as x.

• If x is a multidimensional array, then seqperiod checks for
periodicity along the first nonsingleton dimension of x. In this case:

- p is a multidimensional array of integers with a leading singleton
dimension.

- The lengths of the remaining dimensions of p correspond to those
of the dimensions of x after the first nonsingleton one.

[p,num] = seqperiod(x) also returns the number num of repetitions
of x(1:p) in x. num might not be an integer.

Examples x = [4 0 1 6;
2 0 2 7;
4 0 1 5;
2 0 5 6];

p = seqperiod(x)
p =

2 1 4 3

The result implies:

• The first column of x has period 2.
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• The second column of x has period 1.

• The third column of x is not periodic, so p(3) is just the number of
rows of x.

• The fourth column of x has period 3, although the last (second)
repetition of the periodic sequence is incomplete.
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Purpose Specifications for filter specification object

Syntax setspecs(D,specvalue1,specvalue2,...)
setspecs(D,Specification,specvalue1,specvalue2,...)
setspecs(...Fs)
setspecs(...,MAGUNITS)

Description setspecs(D,specvalue1,specvalue2,...) sets the specifications
in filter specification object, D, in the same order they appear in the
Specification property.

setspecs(D,Specification,specvalue1,specvalue2,...) changes
the specifications for an existing filter specification object and sets
values for the new Specification property.

setspecs(...Fs) specifies the sampling frequency, Fs, in Hz. The
sampling frequency must be a scalar trailing all other specifications.
Entering a sampling frequency causes all other frequency specifications
to be in Hz.

setspecs(...,MAGUNITS) specifies the units for any magnitude
specifications. MAGUNITS can be one of the following: 'linear', 'dB',
or 'squared'. The default is 'dB'. The magnitude specifications are
always converted and stored in dB regardless of how the units are
specified.

Use SET(D,'SPECIFICATION') to get the list of all available
specification types for the filter specification object, D.

Examples Construct a lowpass filter with specifications for the filter order and
cutoff frequency (-6 dB). Use setspecs after construction to set the
values of the filter order and cutoff frequency. Display the values in
the MATLAB command window.

D = fdesign.lowpass('N,Fc');
setspecs(D,10,0.2);
D.FilterOrder
D.Fcutoff
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Construct a highpass filter with specifications for the numerator
order, denominator order, and 3-dB frequency. Assume the sampling
frequency is 1 kHz. Use setspecs to set the numerator and denominator
orders to 6. Set the 3-dB frequency to 250 Hz. In order to use frequency
specifications in Hz, specify the sampling frequency as a trailing scalar.

D = fdesign.highpass('Nb,Na,F3dB');
setspecs(D,6,6,250,1000);

See Also design | designmethods | designopts | fdesign
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Purpose Spurious free dynamic range

Syntax r = sfdr(x)
r = sfdr(x,fs,msd)

r = sfdr(sxx,f,pwrflag)
r = sfdr(sxx,f,msd,pwrflag)

[r,spurpow,spurfreq] = sfdr( ___ )

Description r = sfdr(x) returns the spurious free dynamic range (SFDR), r, in dB
of the real sinusoidal signal, x. sfdr computes the power spectrum
using a modified periodogram with a Hamming window. The mean is
subtracted from x before computing the power spectrum. The number
of points used in the computation of the discrete Fourier transform
(DFT) is the same as the length of the signal, x.

r = sfdr(x,fs,msd) returns the SFDR considering only spurs that are
separated from the fundamental (carrier) frequency by the minimum
spur distance, msd, specified in cycles/unit time. The sampling
frequency is fs. If the carrier frequency is Fc, then all spurs in the
interval (Fc-msd, Fc+msd) are ignored.

r = sfdr(sxx,f,pwrflag) returns the SFDR of the one-sided power
spectrum of a real-valued signal, sxx. f is the vector of frequencies
corresponding to the power estimates in sxx. The first element of f
must equal 0 and the power in the corresponding element of sxx (DC) is
ignored in the SFDR computation.

r = sfdr(sxx,f,msd,pwrflag) returns the SFDR considering only
spurs that are separated from the fundamental (carrier) frequency by
the minimum spur distance, msd. If the carrier frequency is Fc, then
all spurs in the interval (Fc-msd, Fc+msd) are ignored. When the input
to sfdr is a power spectrum, specifying msd can prevent high sidelobe
levels from being identified as spurs.
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[r,spurpow,spurfreq] = sfdr( ___ ) returns the power and frequency
of the largest spur.

Input
Arguments

x - Real-valued sinusoidal signal
row vector | column vector

Real-valued sinusoidal signal, specified as a row or column vector. The
mean is subtracted from x prior to obtaining the power spectrum for
SFDR computation.

Example: x = cos(pi/4*(0:79))+1e-4*cos(pi/2*(0:79));

Data Types
double

fs - Sampling rate
1 (default) | positive scalar

The sampling rate of the signal in cycles/unit time, specified as a
positive scalar. When the unit of time is seconds, fs is in Hz.

Data Types
double

msd - Minimum spur distance
0 (default) | positive scalar

Minimum number of discrete Fourier transform (DFT) bins to ignore in
the SFDR computation, specified as a positive scalar. You can use this
argument to ignore spurs or sidelobes that occur in close proximity to the
carrier, or fundamental frequency. For example, if the carrier frequency
is Fc, then all spurs in the range (Fc-msd, Fc+msd) are ignored.

Data Types
double

sxx - One-sided power spectrum
row or column vector of positive numbers

One-sided power spectrum to use in the SFDR computation, specified as
row or column vector. The first element is the DC power (0 frequency)
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and is removed prior to computing the SFDR. However, depending on
the bandwidth of the window used in obtaining the power spectrum
and the frequency resolution, leakage from a DC shift may be present
in adjacent DFT bins. The presence of leakage from DC can affect the
SFDR computation, see “DC Leakage Affects SFDR” on page 1-955. In
such cases, input the time-domain data instead of the power spectrum
or compute the power spectrum after subtracting the mean from the
signal.

Data Types
double

f - Vector of frequencies
row or column vector of nonnegative numbers

Vector of frequencies corresponding to the power estimates in sxx,
specified as a row or column vector.

pwrflag - Power spectrum input flag
'power'

Flag indicating that the input is a one-sided power spectrum, sxx,
specified as the string 'power'.

Output
Arguments

r - Spurious free dynamic range
real-valued scalar

Spurious free dynamic range in dB, specified as a real-valued scalar.
The spurious free dynamic range is the difference in dB between
the power at the peak frequency and the power at the next largest
frequency (spur). If the input is time series data, the power estimates
are obtained from a modified periodogram using a Hamming window.
The length of the DFT used in the periodogram is equal to the length
of the input signal, x. If you want to use a different power spectrum
as the basis for the SFDR measurement, you can input your power
spectrum using the 'power' flag.

Data Types
double
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spurpow - power of largest spur

Power in dB of the largest spur, specified as a real-valued scalar.

Data Types
double

spurfreq - frequency of largest spur

Frequency in Hz of the largest spur, specified as a real-valued scalar. If
you do not supply the sampling frequency as an input argument, sfdr
assumes a sampling frequency of 1 Hz.

Data Types
double

Examples SFDR of Sinusoid

Obtain the SFDR for a 10 MHz tone with amplitude 1 sampled at 100
MHz. There is a spur at the 1st harmonic (20 MHz) with an amplitude
of 3.16x10-4.

deltat = 1e-8;
t = 0:deltat:1e-6-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
r = sfdr(x);

Minimum Spur Distance

Obtain the SFDR for a 10 MHz tone with amplitude 1 sampled at 100
MHz. There is a spur at the 1st harmonic (20 MHz) with an amplitude
of 3.16x10-4. Use a minimum spur distance of 1 MHz.

deltat = 1e-8;
fs = 1/deltat;
t = 0:deltat:1e-6-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
r = sfdr(x,fs,1e6);
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SFDR from Periodogram

Obtain the power spectrum of a 10 MHz tone with amplitude 1 sampled
at 100 MHz. There is a spur at the 1st harmonic (20 MHz) with an
amplitude of 3.16x10-4. Use the one-sided power spectrum and a vector
of corresponding frequencies in Hz to compute the SFDR.

deltat = 1e-8;
fs = 1/deltat;
t = 0:deltat:1e-6-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
[sxx,f] = periodogram(x,rectwin(length(x)),length(x),fs,'power');
r = sfdr(sxx,f,'power');

Determine Frequency and Power of Largest Spur

Determine the frequency in MHz for the largest spur. The input signal
is a 10 MHz tone with amplitude 1 sampled at 100 MHz. There is a spur
at the 1st harmonic (20 MHz) with an amplitude of 3.16x10-4.

deltat = 1e-8;
t = 0:deltat:1e-6-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
[r,spurpow,spurfreq] = sfdr(x,1/deltat);
spur_MHz = spurfreq/1e6;

DC Leakage Affects SFDR

This example shows how leakage from a DC signal shift can affect the
SFDR when the input to sfdr is a power spectrum.

Create a signal sampled at 44.1 kHz. The signal consists of a
superposition of two sinusoids with frequencies of 9.8 and 14.7 kHz in
white Gaussian additive noise. Assuming the signal values are in volts,
the 9.8-kHz sine wave has an amplitude of 1 volt and the 14.7-kHz sine
wave has an amplitude of 100 microvolts. Equivalently, the power in
the 14.7-kHz sine wave is 80 dB below the power of the 9.8-kHz sine
wave. The additive white Gaussian noise has a mean of 0 and a variance
of 0.001 microvolts. Additionally, the signal has a DC shift of 0.1 volts.
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fs = 44.1e3;
f1 = 9.8e3;
f2 = 14.7e3;
N = 900;
nT = (1:N)/fs;
x = 0.1+sin(2*pi*f1*nT) + 100e-6*sin(2*pi*f2*nT) + sqrt(1e-9)*randn(1,N);

Determine the SFDR using both the time series data input and the
power spectrum. The power spectrum in both cases is obtained using a
Hamming window. Compare the results.

[sfd1, spur1, frq1] = sfdr(x, fs)
[sxx,f]=periodogram(x,hamming(length(x)),length(x),fs,'power');
[sfd2, spur2, frq2] = sfdr(sxx, f,'power')

The frequency resolution is 49 Hz. When the input to sfdr is the power
spectrum obtained without first removing the mean, a spur is detected
at the first nonzero-frequency DFT bin. In this case, the frequency of
the first nonzero DFT bin is 49 Hz. However, when the input to sfdr
is the time series data, the mean is subtracted prior to obtaining the
power spectrum and the leakage from the DC component is avoided.
sfdr correctly detects the spur at 14.7 kHz.

See Also bandpower | enbw | periodogram
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Purpose Savitzky-Golay filter design

Syntax b = sgolay(k,f)
b = sgolay(k,f,w)
[b,g] = sgolay(...)

Description b = sgolay(k,f) designs a Savitzky-Golay FIR smoothing filter b. The
polynomial order k must be less than the frame size, f, which must be
odd. If k = f-1, the designed filter produces no smoothing. The output,
b, is an f-by-f matrix whose rows represent the time-varying FIR
filter coefficients. In a smoothing filter implementation (for example,
sgolayfilt), the last (f-1)/2 rows (each an FIR filter) are applied to
the signal during the startup transient, and the first (f-1)/2 rows are
applied to the signal during the terminal transient. The center row is
applied to the signal in the steady state.

b = sgolay(k,f,w) specifies a weighting vector w with length f,
which contains the real, positive-valued weights to be used during the
least-squares minimization.

[b,g] = sgolay(...) returns the matrix g of differentiation filters.
Each column of g is a differentiation filter for derivatives of order p-1
where p is the column index. Given a signal x of length f, you can find
an estimate of the pth order derivative, xp, of its middle value from:

xp((f+1)/2) = (factorial(p)) * g(:,p+1)' * x

Tips Savitzky-Golay smoothing filters (also called digital smoothing
polynomial filters or least squares smoothing filters) are typically
used to “smooth out” a noisy signal whose frequency span (without
noise) is large. In this type of application, Savitzky-Golay smoothing
filters perform much better than standard averaging FIR filters, which
tend to filter out a significant portion of the signal’s high frequency
content along with the noise. Although Savitzky-Golay filters are more
effective at preserving the pertinent high frequency components of the
signal, they are less successful than standard averaging FIR filters at
rejecting noise when noise levels are particularly high. The particular
formulation of Savitzky-Golay filters preserves various moment orders
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better than other smoothing methods, which tend to preserve peak
widths and heights better than Savitzky-Golay.

Savitzky-Golay filters are optimal in the sense that they minimize the
least-squares error in fitting a polynomial to each frame of noisy data.

Examples Use sgolay to smooth a noisy sinusoid and compare the resulting first
and second derivatives to the first and second derivatives computed
using diff. Notice how using diff amplifies the noise and generates
useless results.

N = 4; % Order of polynomial fit
F = 21; % Window length
[b,g] = sgolay(N,F); % Calculate S-G coefficients

dx = .2;
xLim = 200;
x = 0:dx:xLim-1;

y = 5*sin(0.4*pi*x)+randn(size(x)); % Sinusoid with noise

HalfWin = ((F+1)/2) -1;
for n = (F+1)/2:996-(F+1)/2,

% Zero-th derivative (smoothing only)
SG0(n) = dot(g(:,1), y(n - HalfWin: n + HalfWin));

% 1st differential
SG1(n) = dot(g(:,2), y(n - HalfWin: n + HalfWin));

% 2nd differential
SG2(n) = 2*dot(g(:,3)', y(n - HalfWin: n + HalfWin))';

end

SG1 = SG1/dx; % Turn differential into derivative
SG2 = SG2/(dx*dx); % and into 2nd derivative

% Scale the "diff" results
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DiffD1 = (diff(y(1:length(SG0)+1)))/ dx;
DiffD2 = (diff(diff(y(1:length(SG0)+2)))) / (dx*dx);

subplot(3,1,1);
plot([y(1:length(SG0))', SG0'])
legend('Noisy Sinusoid','S-G Smoothed sinusoid')

subplot(3, 1, 2);
plot([DiffD1',SG1'])
legend('Diff-generated 1st-derivative', ...
'S-G Smoothed 1st-derivative')

subplot(3, 1, 3);
plot([DiffD2',SG2'])
legend('Diff-generated 2nd-derivative',...
'S-G Smoothed 2nd-derivative')

Note The figures below are zoomed in each figure window panel to
show more detail.
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References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1996.

See Also fir1 | firls | filter | sgolayfilt
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Purpose Savitzky-Golay filtering

Syntax y = sgolayfilt(x,k,f)
y = sgolayfilt(x,k,f,w)
y = sgolayfilt(x,k,f,w,dim)

Description y = sgolayfilt(x,k,f) applies a Savitzky-Golay FIR smoothing filter
to the data in vector x. If x is a matrix, sgolayfilt operates on each
column. The polynomial order k must be less than the frame size, f,
which must be odd. If k = f-1, the filter produces no smoothing.

y = sgolayfilt(x,k,f,w) specifies a weighting vector w with length
f, which contains the real, positive-valued weights to be used during
the least-squares minimization. If w is not specified or if it is specified
as empty, [], w defaults to an identity matrix.

y = sgolayfilt(x,k,f,w,dim) specifies the dimension, dim, along
which the filter operates. If dim is not specified, sgolayfilt operates
along the first non-singleton dimension; that is, dimension 1 for column
vectors and nontrivial matrices, and dimension 2 for row vectors.

Tips Savitzky-Golay smoothing filters (also called digital smoothing
polynomial filters or least-squares smoothing filters) are typically used
to “smooth out” a noisy signal whose frequency span (without noise)
is large. In this type of application, Savitzky-Golay smoothing filters
perform much better than standard averaging FIR filters, which tend
to filter out a significant portion of the signal’s high frequency content
along with the noise. Although Savitzky-Golay filters are more effective
at preserving the pertinent high frequency components of the signal,
they are less successful than standard averaging FIR filters at rejecting
noise.

Savitzky-Golay filters are optimal in the sense that they minimize the
least-squares error in fitting a polynomial to frames of noisy data.

Examples Smooth the mtlb signal by applying a cubic Savitzky-Golay filter to
data frames of length 41:
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load mtlb % Load data
smtlb = sgolayfilt(mtlb,3,41); % Apply 3rd-order filter
subplot(2,1,1)
plot([1:2000],mtlb(1:2000)); axis([0 2000 -4 4]);
title('mtlb'); grid;
subplot(2,1,2)
plot([1:2000],smtlb(1:2000)); axis([0 2000 -4 4]);
title('smtlb'); grid;

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1996.

See Also medfilt1 | filter | sgolay | sosfilt
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Purpose Shift data to operate on specified dimension

Syntax [x,perm,nshifts] = shiftdata(x,dim)

Description [x,perm,nshifts] = shiftdata(x,dim) shifts data x to permute
dimension dim to the first column using the same permutation as the
built-in filter function. The vector perm returns the permutation
vector that is used.

If dim is missing or empty, then the first non-singleton dimension is
shifted to the first column, and the number of shifts is returned in
nshifts.

shiftdata is meant to be used in tandem with unshiftdata, which
shifts the data back to its original shape. These functions are useful for
creating functions that work along a certain dimension, like filter,
goertzel, sgolayfilt, and sosfilt.

Examples Example 1

This example shifts x, a 3-x-3 magic square, permuting dimension 2 to
the first column. unshiftdata shifts x back to its original shape.

1. Create a 3-x-3 magic square:

x = fi(magic(3))

x =

8 1 6
3 5 7
4 9 2

2. Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)
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The permutation vector, perm, and the number of shifts, nshifts, are
returned along with the shifted matrix, x:

x =

8 3 4
1 5 9
6 7 2

perm =

2 1

nshifts =

[]

3. Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

8 1 6
3 5 7
4 9 2

Example 2

This example shows how shiftdata and unshiftdata work when you
define dim as empty.

1. Define x as a row vector:

x = 1:5
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x =

1 2 3 4 5

2. Define dim as empty to shift the first non-singleton dimension of x
to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x is returned as a column vector, along with perm, the permutation
vector, and nshifts, the number of shifts:

x =

1
2
3
4
5

perm =

[]

nshifts =

1

3. Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)
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y =

1 2 3 4 5

See Also permute | shiftdim | unshiftdata
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Purpose Signal processing window object

Syntax w=sigwin.window

Description w=sigwin.window returns a window object, w, of type window. Each
window type takes one or more inputs. If you specify a sigwin.window
with no inputs, a default window of length 64 is created.

Note You must specify a window type with sigwin.

Constructors

window for sigwin specifies the type of window. The following table lists
the supported window functions with links to the corresponding class
reference page for the window object.

Window Window object

Modified Bartlett-Hanning
Window

sigwin.barthannwin

Bartlett Window sigwin.bartlett

Blackman Window sigwin.blackman

Blackman-Harris Window sigwin.blackmanharris

Bohman Window sigwin.bohmanwin

Dolph-Chebyshev Window sigwin.chebwin

Flat Top Window sigwin.flattopwin

Gaussian Window sigwin.gausswin

Hamming Window sigwin.hamming

Hann (Hanning) Window sigwin.hann

Kaiser Window sigwin.kaiser
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Window Window object

Nuttall defined 4–term
Blackman-Harris Window

sigwin.nuttallwin

Parzen Window sigwin.parzenwin

Rectangular Window sigwin.rectwin

Taylor Window sigwin.taylorwin

Triangular Window sigwin.triang

Tukey Window sigwin.tukeywin

Methods

Methods provide ways of performing functions directly on your sigwin
object without having to specify the window parameters again. You
can apply this method directly on the variable you assigned to your
sigwin object.

Method Description

generate Returns a column vector of values
representing the window.

info Returns information about the
window object.

winwrite Writes an ASCII file that
contains window weights for a
single window object or a vector of
window objects. Default filename
is untitled.wf.

winwrite(Hd,filename) writes
to a disk file named filename in
the current working directory.
The .wf extension is added
automatically.
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Viewing Object Parameters

As with any object, you can use get to view a sigwin object’s
parameters. To see a specific parameter,

get(w,'parameter')

or to see all parameters for an object,

get(w)

Changing Object Parameters

To set specific parameters,

set(w,'parameter1',value,'parameter2',value,...)

Note that you must use single quotation marks around the parameter
name.

Examples Create a default Bartlett window and view the results in the Window
Visualization Tool (wvtool). See bartlett for information on Bartlett
windows:

w=sigwin.bartlett

w =
Length: 64

Name: 'Bartlett'

wvtool(w)
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Create a 128-point Chebyshev window with 100 dB of sidelobe
attenuation. (See chebwin for information on Chebyshev windows.)
View the results of this and the above Bartlett window in the Window
Design and Analysis Tool (wintool):

w1=sigwin.chebwin(128,100)

w1 =

Length: 128
Name: 'Chebyshev'

SidelobeAtten: 100

wintool(w,w1)
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To save the window values in a vector, use:

d = generate(w);

See Also window | wintool | wvtool
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Purpose Construct Bartlett-Hanning window object

Description sigwin.barthannwin creates a handle to a Bartlett-Hanning window
object for use in spectral analysis and FIR filtering by the window
method. Object methods enable workspace import and ASCII file export
of the window values.

The following equation defines a modified Bartlett-Hanning window
of length N:

w x x x x( ) . . | | . cos( ) / /= − + − ≤ ≤0 62 0 48 0 38 2 1 2 1 2

where x is an N-point linearly spaced vector over the interval [1/2, 1/2].

Construction H = sigwin.barthannwin returns a modified Bartlett-Hanning window
object H of length 64.

H = sigwin.barthannwin(Length) returns a modified
Bartlett-Hanning window object H of length Length. Length requires a
positive integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

Properties Length

Modified Bartlett-Hanning window length. The window length
requires a positive integer. Entering a positive noninteger value
for Length rounds the length to the nearest integer. Entering a 1
for Length results in a window with a single value of 1.
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Methods generate Generates modified
Bartlett-Hanning window

info Display information about
modified Bartlett-Hanning
window object

winwrite Save Bartlett window object
values in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 modified Bartlett-Hanning window:

H=sigwin.barthannwin;
wvtool(H);

Generate length N=128 modified Bartlett-Hanning window, return
values, and write ASCII file with window values:
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H=sigwin.barthannwin(128);
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'barthannwin_128')

References Yeong, H.H., and Pearce, J.A. “A New Window and Comparison to
Standard Windows,” IEEE Transactions on Acoustics, Speech and
Signal Processing, Vol. 37, 1989, pp. 298–301.

See Also sigwin | window | wvtool

Tutorials • “Windows”

How To • Class Attributes

• Property Attributes
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Purpose Generates modified Bartlett-Hanning window

Syntax win = generate(H)

Description win = generate(H) returns the values of the modified Bartlett-Hanning
window object H as a double-precision column vector.

Examples Extract values from modified Bartlett-Hanning window object:

H=sigwin.barthannwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about modified Bartlett-Hanning window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length information for the modified Bartlett-Hanning
window object H.

info_win = info(H) returns length information for the modified
Bartlett-Hanning window object H in the character array info_win.

Examples Return information about a modified Bartlett-Hanning window object:

H = sigwin.barthannwin(256);
info_win = info(H);
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Purpose Save Bartlett window object values in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog box that enables you to export the values of
the modified Bartlett-Hanning window object H to an ASCII file with
filename extension wf .

winwrite(H,'filename') saves the values of the modified
Bartlett-Hanning window object H in the current folder as a column
vector in the ASCII file 'filename'. The filename extension is wf.

Examples Write modified Bartlett-Hanning window values to ASCII file:

H = sigwin.barthannwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Bartlett window object

Description sigwin.bartlett creates a handle to a Bartlett window object for use in
spectral analysis and filtering by the window method. Object methods
enable workspace import and ASCII file export of the window values.

For N even, the following equation defines the Bartlett window:
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For N odd, the equation for the Bartlett window is:
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Construction H = sigwin.bartlett returns a Bartlett window object H of length 64.

H = sigwin.bartlett(Length) returns a Bartlett window object H of
length Length. Length must be a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value of 1.

Properties Length

Bartlett window length. The length requires a positive integer.
Entering a positive noninteger value for Length rounds the length
to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.
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Methods generate Generates Bartlett window

info Display information about
Bartlett window object

winwrite Save Bartlett window object
values in ASCII file

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples Create default length N=64 Bartlett window:

H = sigwin.bartlett;
wvtool(H);

Generate length N=128 Bartlett window, return values, and write ASCII
file with window values:

H = sigwin.bartlett(128);
% Return window with generate
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win = generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'bartlett_128')

References Oppenheim, A.V., and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also sigwin | window | wvtool
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Purpose Generates Bartlett window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Bartlett window object H
as a double-precision column vector.

Examples Extract values from Bartlett window object:

H = sigwin.bartlett(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Bartlett window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length information for the Bartlett window object H.

info_win = info(H) returns length information for the Bartlett
window object H in the character array info_win.

Examples Return information about a Bartlett window object:

H = sigwin.bartlett(256);
info_win = info(H);
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Purpose Save Bartlett window object values in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog box that enables you to export the values of
the Bartlett window object H to an ASCII file with filename extension wf.

winwrite(H,'filename') saves the values of the Bartlett window
object H in the current folder as a column vector in the ASCII file
'filename'. The filename extension is wf.

Examples Write Bartlett window values to ASCII file:

H=sigwin.bartlett;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Blackman window object

Description sigwin.blackman creates a handle to a Blackman window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the Blackman window of length N:

w n n N n N n M( ) . . cos( / ( )) . cos( / ( ))= − − + − ≤ ≤ −0 42 0 5 2 1 0 08 4 1 0 1 

where M is N/2 for N even and (N+1)/2 for N odd.

In the symmetric case, the second half of the Blackman window

M n N≤ ≤ −1 is obtained by flipping the first half around the midpoint.
The symmetric option is the preferred method when using a Blackman
window in FIR filter design.

The periodic Blackman window is constructed by extending the desired
window length by one sample to N+1, constructing a symmetric window,
and removing the last sample. The periodic version is the preferred
method when using a Blackman window in spectral analysis because
the discrete Fourier transform assumes periodic extension of the input
vector.

Construction H = sigwin.blackman returns a Blackman window object H of length
64 with symmetric sampling.

H = sigwin.blackman(Length) returns a Blackman window object H
of length Length with symmetric sampling. Length requires a positive
integer. Entering a positive noninteger value for Length rounds the
length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

H = sigwin.blackman(Length,SamplingFlag) returns a Blackman
window object H with sampling Sampling_Flag. The Sampling_Flag
can be either 'symmetric' or 'periodic'.
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Properties Length

Blackman window length. Must be a positive integer. Entering
a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with
a single value of 1.

SamplingFlag

'symmetric' is the default and forces exact symmetry between
the first and second halves of the Blackman window. A symmetric
window is preferred in FIR filter design by the window method.

'periodic' designs a symmetric Blackman window of length
Length+1 and truncates the window to length Length. This design
is preferred in spectral analysis where the window is treated as
one period of a Length-point periodic sequence.

Methods generate Generates Blackman window

info Display information about
Blackman window object

winwrite Save Blackman window in ASCII
file

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples Default length N=64 symmetric Blackman window:

H = sigwin.blackman;
wvtool(H);
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Generate length N=128 periodic Blackman window, return values, and
write ASCII file:

H = sigwin.blackman(128,'periodic');
% Return window with generate
win = generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'blackman_128')

References Oppenheim, A.V. and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also sigwin | window | wvtool

Tutorials • “Windows”

How To • Class Attributes

• Property Attributes

1-986



sigwin.blackman.generate

Purpose Generates Blackman window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Blackman window object
H as a double-precision column vector.

Examples Extract values from Blackman window object:

H = sigwin.blackman(128);
% Extract window values as column vector
win = generate(H);
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Purpose Display information about Blackman window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and sampling information about the Blackman
window object H.

info_win = info(H) returns length and sampling information about
the Blackman window object H in the character array info_win.

Examples Return information about a Blackman window object:

H = sigwin.blackman(256);
info_win = info(H);
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Purpose Save Blackman window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog box that enables you to export the values of
the Blackman window object H to an ASCII file with filename extension
wf .

winwrite(H,'filename') saves the values of the Blackman window
object H in the current folder as a column vector in the ASCII file
'filename' with filename extension wf.

Examples Write Blackman window values to ASCII file:

H=sigwin.blackman;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Blackman–Harris window object

Description sigwin.blackmanharris creates a handle to a Blackman-Harris
window object for use in spectral analysis and FIR filtering by the
window method. Object methods enable workspace import and ASCII
file export of the window values.

The following equation defines the symmetric Blackman-Harris
window of length N:

w n a a a a n Nn
N

n
N
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The following equation defines the periodic Blackman-Harris window
of length N:
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The following table lists the coefficients:

Coefficient Value

a0 0.35875

a1 0.48829

a2 0.14128

a3 0.01168

Construction H = sigwin.blackmanharris returns a Blackman-Harris window
object H of length 64.

H = sigwin.blackmanharris(Length) returns a Blackman-Harris
window object H of length Length. Length must be a positive integer.
Entering a positive noninteger value for Length rounds the length to
the nearest integer. Entering a 1 for Length results in a window with
a single value of 1.
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Properties Length

Blackman-Harris window length. The window length requires a
positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

SamplingFlag

The type of window returned as one of 'symmetric' or
'periodic'. The default is 'symmetric'. A symmetric window
exhibits perfect symmetry between halves of the window. Setting
the SamplingFlag property to 'periodic' results in a N-periodic
window. The equations for the Blackman-Harris window differ
slightly based on the value of the SamplingFlag property. See
“Description” on page 1-990 for details.

Methods generate Generates Blackman–Harris
window

info Display information about
Blackman–Harris window object

winwrite Save Blackman–Harris window
in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 Blackman-Harris window:

H=sigwin.blackmanharris;
wvtool(H);
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Generate length N=128 periodic Blackman-Harris window, return
values, and write ASCII file:

H=sigwin.blackmanharris(128);
H.SamplingFlag = 'periodic';
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'blackmanharris_128')

References Harris, F. J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform,” Proceedings of the IEEE.. Vol. 66, 1978.

See Also sigwin | window | wvtool
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Purpose Generates Blackman–Harris window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Blackman–Harris
window object H as a double-precision column vector.

Examples Extract values from Blackman–Harris window object:

H=sigwin.blackmanharris(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Blackman–Harris window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length information for the Blackman–Harris window
object H.

info_win = info(H) returns length information for the
Blackman–Harris window object H in the character array info_win.

Examples Return information about a Blackman–Harris window object:

H = sigwin.blackmanharris(256);
info_win = info(H);
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Purpose Save Blackman–Harris window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog box that enables you to export the values of
the Blackman–Harris window object H to an ASCII file with filename
extension wf.

winwrite(H,'filename') saves the values of the Blackman–Harris
window object H in the current folder as a column vector in the ASCII
file 'filename' with filename extension wf.

Examples Write Blackman–Harris window values to ASCII file:

H=sigwin.blackmanharris;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Bohman window object

Description sigwin.bohmanwin creates a handle to a Bohman window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the Bohman window of length N:

w x x x x x( ) ( | |)cos( | |) sin( | |)= − + − ≤ ≤1
1

1 1




where x is a length N vector of linearly spaced values generated using
linspace. The first and last elements of the Bohman window are forced
to be identically zero.

Construction H = sigwin.bohmanwin returns a Bohman window object H of length 64.

H = sigwin.bohmanwin(Length) returns a Bohman window object
H of length Length. Length is a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value of 1.

Properties Length

Bohman window length. Must be a positive integer. Entering
a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with
a single value of 1.

Methods generate Generates Bohman window

info Display information about
Bohman window object

winwrite Save Bohman window object
values in ASCII file
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Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 Bohman window:

H=sigwin.bohmanwin;
wvtool(H);

Generate length N=128 Bohman window, return values, and write
ASCII file:

H=sigwin.bohmanwin(128);
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'bohmanwin_128')
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References Harris, F.J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.”Proceedings of the IEEE.Vol. 66, 1978,
pp. 51–83.

See Also sigwin | window | wvtool
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Purpose Generates Bohman window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Bohman window object as
a double-precision column vector.

Examples Extract values from Bohman window object:

H=sigwin.bohmanwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Bohman window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length information for the Bohman window object H.

info_win = info(H) returns length information for the Bohman
window object H in the character array info_win.

Examples Return information for a Bohman window object:

H=sigwin.bohmanwin(256);
info_win=info(H);

1-1000



sigwin.bohmanwin.winwrite

Purpose Save Bohman window object values in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Bohman window
object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the Bohman window
object H in the current folder as a column vector in the ASCII file
'filename'. The file extension .wf is automatically appended to
filename.

Examples Write Bohman window values to ASCII file:

H=sigwin.bohmanwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Dolph-Chebyshev window object

Description sigwin.chebwin creates a handle to a Dolph–Chebyshev window object
for use in spectral analysis and FIR filtering by the window method.
Object methods enable workspace import and ASCII file export of the
window values.

The Dolph-Chebyshev window is constructed in the frequency domain
by taking samples of the window’s Fourier transform:

ˆ ( ) ( )
cos[ cos [ cos( / )]]

cosh[ cosh ( )]
W k

N k N

N
k Nk= − ≤ ≤ −

−

−
1 0 1

1

1
 



where

 = −cos[ / cosh ( )]1 101N

 determines the level of the sidelobe attenuation. The level of
the sidelobe attenuation is equal to −20 . For example, 100 dB of
attenuation results from setting  = 5

The discrete-time Dolph-Chebyshev window is obtained by taking the

inverse DFT of ˆ ( )W k and scaling the result to have a peak value of 1.

Construction H = sigwin.chebwin returns a Dolph-Chebyshev window object H of
length 64 with relative sidelobe attenuation of 100 dB.

H = sigwin.chebwin(Length) returns a Dolph–Chebyshev window
object H of length Length with relative sidelobe attenuation of 100 dB.
Length requires a positive integer. Entering a positive noninteger value
for Length rounds the length to the nearest integer. A window length of
1 results in a window with a single value equal to 1.

H = sigwin.chebwin(Length,SidelobeAtten) returns a
Dolph-Chebyshev window object with relative sidelobe attenuation of
atten_param dB.
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Properties Length

Dolph-Chebyshev window length.

SidelobeAtten

The attenuation parameter in dB. The attenuation parameter
is a positive real number that determines the relative sidelobe
attenuation of the window.

Methods generate Generates Dolph-Chebyshev
window

info Display information about
Dolph–Chebyshev window object

winwrite Save Dolph-Chebyshev window
object values in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 Dolph–Chebyshev window with 100 dB relative
sidelobe attenuation:

H=sigwin.chebwin;
wvtool(H);
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Generate length N=128 Chebyshev window with 120 dB attenuation,
return values, and write ASCII file:

H=sigwin.chebwin(128,120);
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'chebwin_128_100')

References Harris.F.J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66, 1978,
pp. 51–83.

See Also sigwin | window | wvtool
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Purpose Generates Dolph-Chebyshev window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Dolph-Chebyshev window
object H as a double-precision column vector.

Examples Extract values from Dolph-Chebyshev window object:

H=sigwin.chebwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Dolph–Chebyshev window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and relative sidelobe attenuation information
for the Dolph-Chebyshev window object H.

info_win = info(H) returns length information for the
Dolph-Chebyshev window object H in the character array info_win.

Examples Return information about a Dolph-Chebyshev window object:

H=sigwin.chebwin(256);
info_win=info(H);
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Purpose Save Dolph-Chebyshev window object values in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Dolph-Chebyshev
window object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the Dolph-Chebyshev
window object H in the current folder as a column vector in the ASCII
file 'filename'. The file extension .wf is automatically appended to
filename.

Examples Write Dolph-Chebyshev window values to ASCII file:

H=sigwin.chebwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct flat top window object

Description sigwin.flattopwin creates a handle to a flat top window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

Construction H = sigwin.flattopwin returns a flat top window object H of length 64
with symmetric sampling.

H = sigwin.flattopwin(Length) returns a flat top window object of
length Length with symmetric sampling. Length must be a positive
integer. Entering a positive noninteger value for Length rounds the
length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

H = sigwin.flattopwin(Length,SamplingFlag) returns a flat top
window object H of length Length with sampling SamplingFlag. The
SamplingFlag can be either 'symmetric' or 'periodic'.

Properties Length

Flat top window length. Must be a positive integer. Entering
a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with
a single value of 1.

SamplingFlag

'symmetric' is the default and forces exact symmetry between
the first and second halves of the flat top window. A symmetric
window is preferred in FIR filter design.

'periodic' designs a symmetric flat top window of length
Length+1 and truncates the window to length Length. This design
is preferred in spectral analysis where the window is treated as
one period of a Length-point periodic sequence.
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Methods generate Generates flat top window

info Display information about flat
top window object

winwrite Save flat top window in ASCII file

Definitions The following equation defines the flat top window of length N:

w n a a n N a n N a n N( ) cos( / ( )) cos( / ( )) cos( / ( ))= − − + − − −0 1 2 32 1 4 1 6 1π π π ++ a4 co

where M is N/2 for N even and (N+1)/2 for N odd.

The second half of the symmetric flat top window M n N≤ ≤ −1 is
obtained by flipping the first half around the midpoint. The symmetric
option is the preferred method when using a flat top window in FIR
filter design by the window method.

The periodic flat top window is constructed by extending the desired
window length by one sample, constructing a symmetric window, and
removing the last sample. The periodic version is the preferred method
when using a flat top window in spectral analysis because the discrete
Fourier transform assumes periodic extension of the input vector.

The coefficients are listed in the following table:

Coefficient Value

a0 0.21557895

a1 0.41663158

a2 0.277263158

a3 0.083578947

a4 0.006947368
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Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 symmetric flat top window:

H=sigwin.flattopwin;
wvtool(H);

Generate length N=128 periodic flat top window, return values, and
write ASCII file:

H=sigwin.flattopwin(128,'periodic');
% Return window with generate
win=generate(H);
% Write ascii file in current directory
% with window values
winwrite(H,'flattopwin_128')

References Oppenheim, A.V. and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.
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Purpose Generates flat top window

Syntax win = generate(H)

Description win = generate(H) returns the values of the flat top window object as
a double-precision column vector.

Examples Extract values from flat top window object:

H=sigwin.flattopwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about flat top window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and sampling information for the flat top
window object H.

info_win = info(H) returns length and sampling information for the
flat top window object H in the character array info_win.

Examples Return information about a flat top window object:

H=sigwin.flattopwin(256);
info_win=info(H);
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Purpose Save flat top window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the flat top window values to an
ASCII file. The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the flat top window object
H in the current folder as a column vector in the ASCII file 'filename'.
The file extension .wf is automatically appended to filename.

Examples Write flat top window values to ASCII file:

H=sigwin.flattopwin;
% Open dialog for ASCII file
winwrite(H);
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Purpose Construct Gaussian window object

Description sigwin.gausswin creates a handle to a Gaussian window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the Gaussian window of length N:

w x e M x Mx M( ) / ( / )= − ≤ ≤−1 2 2 2 2

where M=(N-1)/2 and x is a linearly spaced vector of length N.

Equating  with the usual standard deviation of a Gaussian value,
 , note:




= −( )N 1
2

Construction H = sigwin.gausswin returns a Gaussian window object H of length 64
and dispersion parameter alpha of 2.5.

H = sigwin.gausswin(Length) returns a Gaussian window object H of
length Length and dispersion parameter alpha of 2.5. Length requires
a positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

H = sigwin.gausswin(Length,Alpha) returns a Gaussian window
object with dispersion parameter alpha. alpha requires a nonnegative
real number and is inversely proportional to the standard deviation
of a Gaussian value.

Properties Length

Gaussian window length. The window length requires a positive
integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results
in a window with a single value of 1.
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Alpha

Width of Gaussian window. Alpha is inversely proportional to the
standard deviation of a Gaussian. Larger values of Alpha produce
Gaussian windows with inflection points closer to the peak value,
or narrower windows. In the frequency domain, larger values of
Alpha produce a Gaussian window with increased spread of the
main lobe in frequency but decreased sidelobe energy.

Methods generate Generates Gaussian window

info Display information about
Gaussian window object

winwrite Save Gaussian window in ASCII
file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Compare two Gaussian windows with different alpha values:

H=sigwin.gausswin(64,4);
H1=sigwin.gausswin(64,2.5);
% Plot comparison
fwvt=wvtool(H,H1);
legend(get(fwvt,'currentaxes'),'\alpha=4','\alpha=2.5');

The main lobe is wider for alpha=4 but the window, with alpha=4,
demonstrates reduced sidelobe energy.
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References Harris, F.J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform,” Proceedings of the IEEE. Vol. 66, 1978,
pp. 51–83.

See Also sigwin | window | wvtool
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Purpose Generates Gaussian window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Gaussian window object H
as a double-precision column vector.

Examples Extract values from Gaussian window object:

H=sigwin.gausswin(128,4);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Gaussian window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and dispersion information for the Gaussian
window object H.

info_win = info(H) returns length and dispersion information for the
Gaussian window object H in the character array info_win.

Examples Return information about a Gaussian window object:

H=sigwin.gausswin(256);
info_win=info(H);
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Purpose Save Gaussian window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of Gaussian window
object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the Gaussian window
object H in the current folder as a column vector in the ASCII file
'filename'. The file extension .wf is automatically appended to
filename.

Examples Write Gaussian window values to ASCII file:

H=sigwin.gausswin;
% Open dialog for ASCII file
winwrite(H);
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Purpose Construct Hamming window object

Description sigwin.hamming creates a handle to a Hamming window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the Hamming window of length N:

w n n N n M( ) . . cos( / )= − − ≤ ≤ −0 54 0 46 2 1 0 1

where M is N/2 for N even and (N+1)/2 for N odd.

The second half of the symmetric Hamming window M n N≤ ≤ −1 is
obtained by flipping the first half around the midpoint. The symmetric
option is the preferred method when using a Hamming window in FIR
filter design.

The periodic Hamming window is constructed by extending the desired
window length by one sample, constructing a symmetric window,
and removing the last sample. The periodic version is the preferred
method when using a Hamming window in spectral analysis because
the discrete Fourier transform assumes periodic extension of the input
vector.

Construction H = sigwin.hamming returns a symmetric Hamming window object
H of length 64.

H = sigwin.hamming(Length) returns a symmetric Hamming window
object with length Length . Length must be a positive integer. Entering
a positive noninteger value for Length rounds the length to the nearest
integer. Entering a 1 for Length results in a window with a single
value of 1.

H = sigwin.hamming(Length,SamplingFlag) returns a Hamming
window with sampling Sampling_Flag. The SamplingFlag can be
either 'symmetric' or 'periodic'.
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Properties Length

Hamming window length. The window length must be a positive
integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results
in a window with a single value of 1.

SamplingFlag

'symmetric' is the default and forces exact symmetry between
the first and second halves of the Hamming window. A symmetric
window is preferred in FIR filter design by the window method.

'periodic' designs a symmetric Hamming window of length
Length+1 and truncates the window to length Length. This design
is preferred in spectral analysis where the window is treated as
one period of a Length-point periodic sequence.

Methods generate Generates Hamming window

info Display information about
Hamming window object

winwrite Save Hamming window in ASCII
file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 symmetric Hamming window:

H=sigwin.hamming;
wvtool(H);
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Generate a length N=128 periodic Hamming window, return the values,
and write ASCII file:

H=sigwin.hamming(128,'periodic');
% Return window values with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'hamming_128')

References Oppenheim, A.V. and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also sigwin | window | wvtool

Tutorials • “Windows”
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Purpose Generates Hamming window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Hamming window object
as a double-precision column vector.

Examples Extract values from Hamming window object:

H=sigwin.hamming(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Hamming window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and sampling information for the Hamming
window object H.

info_win = info(H) returns length and sampling information for the
Hamming window object H in the character array info_win.

Examples Return information about a Hamming window object:

H=sigwin.hamming(256);
info_win=info(H);
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Purpose Save Hamming window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the Hamming window values to
an ASCII file. The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Hamming window
object H in the current folder as a column vector in the ASCII file
'filename'. The file extension .wf is automatically appended to
filename.

Examples Write Hamming window values to ASCII file:

H=sigwin.hamming;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Hann (Hanning) window object

Description sigwin.hann creates a handle to a Hann window object for use in
spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The symmetric Hann window of length N is defined as:

w n n N n M( ) . ( cos( / ))= − − ≤ ≤ −0 5 1 2 1 0 1

where M is N/2 for N even and (N+1)/2 for N odd.

The second half of the symmetric Hann window M n N≤ ≤ −1 is
obtained by flipping the first half around the midpoint. The symmetric
option is the preferred method when using a Hann window in FIR filter
design.

The periodic Hann window is constructed by extending the desired
window length by one sample, constructing a symmetric window, and
removing the last sample. The periodic version is the preferred method
when using a Hann window in spectral analysis because the discrete
Fourier transform assumes periodic extension of the input vector.

Construction H = sigwin.hann returns a symmetric Hann window object H of length
64.

H = sigwin.hann(Length) returns a symmetric Hann window object
with length Length. Length requires a positive integer. Entering a
positive noninteger value for Length rounds the length to the nearest
integer. Entering a 1 for Length results in a window with a single
value of 1.

H = sigwin.hann(Length,SamplingFlag) returns a Hann window
object with sampling Sampling_Flag. The SamplingFlag can be either
'symmetric' or 'periodic'.
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Properties Length

Hann window length. Must be a positive integer. Entering a
positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with
a single value of 1.

SamplingFlag

'symmetric' is the default and forces exact symmetry between
the first and second halves of the Hann window. A symmetric
window is preferred in FIR filter design by the window method.

'periodic' designs a symmetric Hann window of length
Length+1 and truncates the window to length Length. This design
is preferred in spectral analysis where the window is treated as
one period of a Length-point periodic sequence.

Methods generate Generates Hann window

info Display information about Hann
window object

winwrite Save Hann window object values
in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 symmetric Hann window:

H=sigwin.hann;
wvtool(H);

1-1028



sigwin.hann

Generate length N=128 periodic Hann window, return values, and write
ASCII file:

H=sigwin.hann(128,'periodic');
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'hann_128')

References Oppenheim, A.V. and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also sigwin | window | wvtool
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Purpose Generates Hann window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Hann window object H as
a double-precision column vector.

Examples Extract values from Hann window object:

H=sigwin.hann(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Hann window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and sampling information for the Hann
window object H.

info_win = info(H) returns length and sampling information for the
Hann window object H in the character array info_win.

Examples Return information about a Hann window object:

H=sigwin.hann(256);
info_win=info(H);
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Purpose Save Hann window object values in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Hann window
object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the Hann window object
H in the current folder as a column vector in the ASCII file 'filename'.
The file extension .wf is automatically appended to filename.

Examples Write Hann window values to ASCII file:

H=sigwin.hann;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Kaiser window object

Description sigwin.kaiser creates a handle to a Kaiser window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the Kaiser window of length N:

w x I I N x Nx
N

( ) / ( ) ( ) / ( ) /( )
( )

= − − − ≤ ≤ −
−0

4
1 01 1 2 1 2
2

2 

where x is linearly spaced N-point vector and I0() is the modified zero-th

order Bessel function of the first kind.  is the attenuation parameter.

Construction H = sigwin.kaiser returns a Kaiser window object H of length 64 and
attenuation parameter beta of 0.5.

H = sigwin.kaiser(Length) returns a Kaiser window object H of
length Length and attenuation parameter beta of 0.5. Length requires
a positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

H = sigwin.kaiser(Length,Beta) returns a Kaiser window object
with real-valued attenuation parameter beta.

Properties Length

Kaiser window length. The window length requires a positive
integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results
in a window with a single value of 1.

Beta

Attenuation parameter. Beta requires a real number. Larger
absolute values of Beta result in greater stopband attenuation,
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or equivalently greater attenuation between the main lobe and
first side lobe.

Methods generate Generates Kaiser window

info Display information about Kaiser
window object

winwrite Save Kaiser window in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Compare two Kaiser windows with different Beta values:

H = sigwin.kaiser(128,1.5);
% Kaiser window with Beta=4.5
H1 = sigwin.kaiser(128,4.5);
% Plot comparison
fwvt = wvtool(H,H1);
legend(get(fwvt,'currentaxes'),'\beta=1.5','\beta=4.5');
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References Oppenheim, A.V., and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also besseli | sigwin | window | wvtool |

Tutorials • “Windows”

How To • Class Attributes

• Property Attributes
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Purpose Generates Kaiser window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Kaiser window object as a
double-precision column vector.

Examples Extract values from Kaiser window object:

H=sigwin.kaiser(128,4);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Kaiser window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and attenuation information for the Kaiser
window object H.

info_win = info(H) returns length and attenuation information for
the Kaiser window object H in the character array info_win.

Examples Return information about a Kaiser window object:

H=sigwin.kaiser(256);
info_win=info(H);
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Purpose Save Kaiser window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the Kaiser window values to an
ASCII file. The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Kaiser window object
H in the current folder as a column vector in the ASCII file 'filename'.
The file extension .wf is automatically appended to filename.

Examples Write Kaiser window values to ASCII file:

H=sigwin.kaiser;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Nuttall defined 4–term Blackman-Harris window object

Description sigwin.nuttallwin creates a handle to a Nuttall defined 4–term
Blackman-Harris window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace
import and ASCII file export of the window values.

Construction H = sigwin.nuttallwin returns a Nuttall defined 4–term
Blackman-Harris window object window object H of length 64.

H = sigwin.nuttallwin(Length) returns a Nuttall defined 4–term
Blackman-Harris window object H of length Length. Entering a positive
noninteger value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value of 1.
The SamplingFlag property defaults to 'symmetric'.

Properties Length

Nuttall defined 4–term Blackman-Harris window length. The
window length must be a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest
integer. Entering a 1 for Length results in a window with a single
value of 1.

SamplingFlag

The type of window returned as one of 'symmetric' or
'periodic'. The default is 'symmetric'. A symmetric window
exhibits perfect symmetry between halves of the window.
Setting the SamplingFlag property to 'periodic' results in a
N-periodic window. The equations for the Nuttall defined 4–term
Blackman-Harris window differ slightly based on the value of
the SamplingFlag property. See “Definitions” on page 1-1040
for details.
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Methods generate Generates Nuttall defined 4–term
Blackman-Harris window

info Display information about Nuttall
defined 4–term Blackman-Harris
window object

winwrite Save Nuttall defined 4-term
Blackman-Harris window object
values in ASCII file

Definitions The following equation defines the symmetric Nuttall defined 4–term
Blackman-Harris window of length N.

w n a a a a n Nn
N

n
N

n
N

( ) cos( ) cos( ) cos( )        0 1
2

1 2
4

1 3
6

1
0 1  

The following equation defines the periodic Nuttall defined 4–term
Blackman-Harris window of length N.

w n a a a a n Nn
N

n
N
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( ) cos( ) cos( ) cos( )      0 1
2

2
4

3
6 0 1  

The following table lists the coefficients:

Coefficient Value

a0 0.3635819

a1 0.4891775

a2 0.1365995

a3 0.0106411

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.
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Examples Construct a length N=64 symmetric Nuttall defined 4–term
Blackman-Harris window:

H=sigwin.nuttallwin;
wvtool(H);

Generate a length N=128 periodic Nuttall defined 4–term
Blackman-Harris window, return values, and write ASCII file:

H=sigwin.nuttallwin(128);
H.SamplingFlag = 'periodic';
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'nuttallwin_128')

References Nuttall, A.H. “Some Windows with Very Good Sidelobe Behavior."
IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol.
29, 1981, pp. 84–91.
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See Also sigwin | window | wvtool
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How To • Class Attributes

• Property Attributes
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Purpose Generates Nuttall defined 4–term Blackman-Harris window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Nuttall defined 4–term
Blackman-Harris window object as a double-precision column vector.

Examples Extract values from Nuttall defined 4–term Blackman-Harris window
object:

H=sigwin.nuttallwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Nuttall defined 4–term Blackman-Harris
window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length information about the Nuttall defined 4–term
Blackman-Harris window object H.

info_win = info(H) returns length information about the Nuttall
defined 4–term Blackman-Harris window object H in the character
array info_win.

Examples Return information about Nuttall defined 4–term Blackman-Harris
window object:

H=sigwin.nuttallwin(256);
info_win=info(H);
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Purpose Save Nuttall defined 4-term Blackman-Harris window object values
in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Nuttall defined
4-term Blackman-Harris window object H to an ASCII file. The file
extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Nuttall defined
4-term Blackman-Harris window object H in the current folder as a
column vector in the ASCII file 'filename'. The file extension .wf is
automatically appended to filename.

Examples Write Nuttall defined 4-term Blackman-Harris window values to ASCII
file:

H=sigwin.nuttallwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Parzen window object

Description sigwin.parzenwin creates a handle to a Parzen window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the N–point Parzen window over the
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Construction H = sigwin.parzenwin returns a Parzen window object H of length 64.

H = sigwin.parzenwin(Length) returns a Parzen window object H of
length Length. Length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value of 1.

Properties Length

Length requires a positive integer. Entering a positive noninteger
value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value
of 1.

Methods generate Generate Parzen window

info Display information about Parzen
window object

winwrite Save Parzen window in ASCII file
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Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 Parzen window:

H=sigwin.parzenwin;
wvtool(H);

Generate length N=128 Parzen window object, return values, and write
ASCII file:

H=sigwin.parzenwin(128);
% Return window with generate
win=generate(H);
% Write ascii file in current directory
% with window values
winwrite(H,'parzenwin_128')
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References Harris, F.J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE, Vol. 66. 1978,
pp. 51–83.

See Also sigwin | window | wvtool
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Purpose Generate Parzen window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Parzen window object as
a double-precision column vector.

Examples Extract values from Parzen window object:

H=sigwin.parzenwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Parzen window object

Syntax info(H)
info_win=info(H)

Description info(H) displays length information about the Parzen window object H.

info_win=info(H) returns length information about the Parzen
window object H in the character array info_win.

Examples Return information about a Parzen window object:

% 256-point Parzen window
H=sigwin.parzenwin(256);
info_win=info(H);
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Purpose Save Parzen window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Parzen window
object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the Parzen window object
H in the current folder as a column vector in the ASCII file 'filename'.
The file extension .wf is automatically appended to filename.

Examples Write Parzen window values to ASCII file:

H=sigwin.parzenwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct rectangular window object

Description sigwin.rectwin creates a handle to a rectangular window object for
use in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the rectangular window of length N:

w n n N( ) = ≤ ≤ −1 0 1

Construction H = sigwin.rectwin returns a rectangular window object H of length
64.

H = sigwin.rectwin(Length) returns a rectangular window object H of
length Length. Length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value of 1.

Properties Length

Rectangular window length. The window length requires a
positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

Methods generate Generates rectangular window

info Display information about
rectangular window object

winwrite Save rectangular window in
ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.
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Examples Create default length N=64 rectangular window:

H=sigwin.rectwin;
wvtool(H);

Generate length N=128 rectangular window, return values, and write
ASCII file:

H=sigwin.rectwin(128);
% Return window with generate
win=generate(H);
% Write ascii file in current directory
% with window values
winwrite(H,'rectwin_128')

References Oppenheim, A.V., and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also sigwin | window | wvtool

Tutorials • “Windows”
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Purpose Generates rectangular window

Syntax win = generate(H)

Description win = generate(H) returns the values of the rectangular window
object H as a double-precision column vector.

Examples Extract values from rectangular window object:

H=sigwin.rectwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about rectangular window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length information for the rectangular window object
H.

info_win = info(H) returns length information for the rectangular
window object H in the character array info_win.

Examples Return information about a rectangular window object:

H=sigwin.rectangular(256);
info_win=info(H);
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Purpose Save rectangular window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the rectangular
window object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the rectangular window
object H in the current folder as a column vector in the ASCII file
'filename'. The file extension .wf is automatically appended to
filename.

Examples Write rectangular window values to ASCII file:

H=sigwin.rectwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Taylor window object

Description sigwin.taylorwin creates a handle to a Taylor window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

Taylor windows are similar to Dolph-Chebyshev windows. The Taylor
window approximates the minimization of the main lobe width in the
Dolph-Chebyshev window, but allows the sidelobe levels to decrease
beyond a certain frequency. Taylor windows are typically used in radar
applications, such as weighting synthetic aperature radar images and
antenna design.

Construction H = sigwin.taylorwin returns a Taylor window object H of length 64,
with a maximum sidelobe level of 30 dB and 4 constant-level sidelobes
adjacent to the main lobe.

H = sigwin.taylorwin(Length) returns a Taylor window object
H of length Length with a maximum sidelobe level of 30 dB and 4
constant-level sidelobes adjacent to the main lobe. Length must be a
positive integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

H = sigwin.taylorwin(Length,Nbar) returns a Taylor window object
with Nbar nearly constant-level sidelobes adjacent to the main lobe.
Nbar must be a positive integer.

H = sigwin.taylorwin(Length,Nbar,SidelobeLevel) returns a
Taylor window object with a maximum sidelobe level SidelobeLevel
dB below the main lobe level.

Properties Length

Taylor window length. The window length must be a positive
integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results
in a window with a single value of 1.
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Nbar

Number of nearly constant-level sidelobes. Must be a positive
integer.

SidelobeLevel

Maximum sidelobe level relative to the main lobe peak. The
maximum sidelobe level is a nonnegative number which gives side
lobes SidelobeLevel dB down from the main lobe peak.

Methods generate Generates Taylor window

info Display information about Taylor
window object

winwrite Save Taylor window object values
in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 Taylor window:

H=sigwin.taylorwin;
wvtool(H);
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Generate length N=128 Taylor window, return values, and write ASCII
file with window values:

H=sigwin.taylorwin(128);
% Return window with generate
win=generate(H);
% Write ASCII file in current directory
% with window values
winwrite(H,'taylorwin_128')

References Carrara, W.G., R.M. Majewski and R.S. Goodman. Spotlight Synthetic
Aperature Radar: Signal Processing Algorithms, Artech House
Publishers, Boston, 1995, Appendix D.2.

See Also sigwin | window | wvtool
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Purpose Generates Taylor window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Taylor window object H as
a double-precision column vector.

Examples Extract values from Taylor window object:

H=sigwin.taylorwin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Taylor window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and sidelobe information for the Taylor window
object H.

info_win = info(H) returns length and sidelobe information for the
Taylor window object H in the character array info_win.

Examples Return information about a Taylor window object:

H=sigwin.taylorwin(256);
info_win=info(H);
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Purpose Save Taylor window object values in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Taylor window
object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the Taylor window object
H in the current folder as a column vector in the ASCII file 'filename'.
The file extension .wf is automatically appended to filename.

Examples Write Taylor window values to ASCII file:

H=sigwin.taylorwin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct triangular window object

Description sigwin.triang is a triangular window object.

sigwin.triang creates a handle to a triangular window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

For L odd, the triangular window is defined as:
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For L even, the triangular window is defined as:
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Construction H = sigwin.triang returns a triangular window object H of length 64.

H = sigwin.triang(Length) returns a triangular window object H of
length Length. Entering a positive non-integer value for Length rounds
the length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

Properties Length

Triangular window length. The window length requires a positive
integer. Entering a positive non-integer value for Length rounds
the length to the nearest integer. Entering a 1 for Length results
in a window with a single value of 1.
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Methods generate Generates triangular window

info Display information about
triangular window

winwrite Save triangular window in ASCII
file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length L = 64 triangular window:

H=sigwin.triang;
wvtool(H);

Generate length L = 128 triangular window, return values, and write
ASCII file:

H=sigwin.triang(128);
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% Return window with generate
win=generate(H);
% Write ascii file in current directory
% with window values
winwrite(H,'triang_128')

References Oppenheim, A.V., and Schafer, R.W. Discrete-time Signal Processing,
Upper Saddle River, N.J: Prentice Hall, 1989, pp. 444–447.

See Also sigwin | window | wvtool

Tutorials • “Windows”

How To • Class Attributes

• Property Attributes
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Purpose Generates triangular window

Syntax win = generate(H)

Description win = generate(H) returns the values of the triangular window object
H as a double-precision column vector.

Examples Extract values from triangular window object:

H=sigwin.triang(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about triangular window

Syntax info(H)
info_array = info(H)

Description info(H) displays length information for the triangular window object H.

info_array = info(H) returns length information for the triangular
window object H in the character array info_array.

Examples Return information about a triangular window object:

H=sigwin.triangular(256);
info_win=info(H);
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Purpose Save triangular window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the triangular
window object H to an ASCII file. The file extension .wf is automatically
appended.

winwrite(H,'filename') saves the values of the triangular window
object H as a column vector in the ASCII file 'filename' in the current
folder. The file extension .wf is automatically appended to filename.

Examples Write triangular window values to ASCII file:

H=sigwin.triang;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Construct Tukey window object

Description sigwin.tukeywin creates a handle to a Tukey window object for use
in spectral analysis and FIR filtering by the window method. Object
methods enable workspace import and ASCII file export of the window
values.

The following equation defines the N–point Tukey window:
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where x is a N–point linearly spaced vector generated using linspace.
The parameter α is the ratio of cosine-tapered section length to the
entire window length with 0 ≤α≤1. For example, setting α=0.5 produces
a Tukey window where 1/2 of the entire window length consists of
segments of a phase-shifted cosine with period 2α=1. If you specify α≤0,
an N-point rectangular window is returned. If you specify α≥1, a von
Hann window (sigwin.hann) is returned.

Construction H = sigwin.tukeywin returns a Tukey or cosine-tapered window object
H of length 64 with Alpha parameter equal to 0.5.

H = sigwin.tukeywin(Length) returns a Tukey window object H of
length Length with Alpha parameter equal to 0.5. Length requires a
positive integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer.

H = sigwin.tukeywin(Length,Alpha) returns a Tukey window object
with the ratio of the tapered section length to the entire window length
Alpha. Alpha defaults to 0.5. As Alpha approaches zero, the Tukey
window approaches a rectangular window. As Alpha approaches one,
the Tukey window approaches a Hann window.
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Properties Length

Tukey window length. The window length must be a positive
integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results
in a window with a single value of 1.

Alpha

The ratio of tapered window section to constant section. As a ratio,

Alpha satisfies the inequality 0 1≤ ≤ . As Alpha approaches
zero, the Tukey window approaches a rectangular window. As
Alpha approaches one, the Tukey window approaches a Hann
window. Specifying Alpha less than zero or greater than one
replaces Alpha with 0 and 1 respectively.

Methods generate Generates Tukey window

info Display information about Tukey
window object

winwrite Save Tukey window in ASCII file

Copy
Semantics

Handle. To learn how copy semantics affect your use of the class,
see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples Default length N=64 Tukey window:

H=sigwin.tukeywin;
wvtool(H);
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Generate length N=128 Tukey window, return values, and write ASCII
file:

H=sigwin.tukeywin(128,1/4);
% Return window with generate
win=generate(H);
% Write ascii file in current directory
% with window values
winwrite(H,'tukeywin_128')

References [1] Bloomfield P. Fourier Analysis of Time Series: An Introduction, New
York: Wiley-Interscience, 2000, p.69.

See Also sigwin | window | wvtool

Tutorials • “Windows”

How To • Class Attributes

• Property Attributes
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Purpose Generates Tukey window

Syntax win = generate(H)

Description win = generate(H) returns the values of the Tukey window object H as
a double-precision column vector.

Examples Extract values from Tukey window object:

H=sigwin.tukeywin(128);
% Extract window values as column vector
win=generate(H);
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Purpose Display information about Tukey window object

Syntax info(H)
info_win = info(H)

Description info(H) displays length and tapered–to–constant section ratio
information for the Tukey window object H.

info_win = info(H) returns length and tapered–to–constant section
ratio information for the Tukey window object H in the character array
info_win.

Examples Return information about a Tukey window object:

H=sigwin.tukey(256);
info_win=info(H);
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Purpose Save Tukey window in ASCII file

Syntax winwrite(H)
winwrite(H,'filename')

Description winwrite(H) opens a dialog to export the values of the Tukey window
object to an ASCII file. The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Tukey window object
H in the current folder as a column vector in the ASCII file 'filename'.
The file extension .wf is automatically appended to filename.

Examples Write Tukey window values to ASCII file:

H=sigwin.tukeywin;
% Open dialog box for ASCII file
winwrite(H);
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Purpose Sinc vector or matrix

Syntax y = sinc(x)

Description sinc computes the sinc function of an input vector or array, where the
sinc function is

sinc( )
,

sin( )t
t

t
t

t
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1 0
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This function is the continuous inverse Fourier transform of the
rectangular pulse of width 2π and height 1.
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−
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y = sinc(x) returns an array y the same size as x, whose elements
are the sinc function of the elements of x.

The space of functions bandlimited in the frequency range   ∈ −[ , ] is
spanned by the infinite (yet countable) set of sinc functions shifted by
integers. Thus any such bandlimited function g(t) can be reconstructed
from its samples at integer spacings.

g t g n t n
n

( ) ( ) ( )= −
=−∞

∞

∑ sinc

Examples Perform ideal bandlimited interpolation by assuming that the signal to
be interpolated is 0 outside of the given time interval and that it has
been sampled at exactly the Nyquist frequency:

t = (1:10)'; % Column vector of time samples
x = randn(size(t)); % Column vector of data
ts = linspace(-5,15,600)'; % Times at which to interpolate
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y = sinc(ts(:,ones(size(t))) - t(:,ones(size(ts)))')*x;
plot(t,x,'o',ts,y)

See Also chirp | cos | diric | gauspuls | pulstran | rectpuls | sawtooth |
sin | square | tripuls
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Purpose Slew rate of bilevel waveform

Syntax S = slewrate(X)
S = slewrate(X,Fs)
S = slewrate(X,T)
[S,LT,UT] = slewrate(...)
[S,LT,UT,LL,UL] = slewrate(...)
S = slewrate(...,Name,Value)
slewrate(...)

Description S = slewrate(X) returns the slew rate for all transitions found in the
bilevel waveform, X. The slew rate is the slope of the line connecting the
10% and 90% reference levels. The sample instants of X are the indices
of the vector. To determine the transitions, slewrate estimates the
state levels of the input waveform by a histogram method. slewrate
identifies all regions that cross the upper-state boundary of the low
state and the lower-state boundary of the high state. The low-state and
high-state boundaries are expressed as the state level plus or minus a
multiple of the difference between the state levels. See “State-Level
Tolerances” on page 1-1081.

S = slewrate(X,Fs) specifies the sample rate, Fs, in hertz. The first
time instant in X corresponds to t=0.

S = slewrate(X,T) specifies the sample instants in the vector, T. The
length of T must equal the length of X.

[S,LT,UT] = slewrate(...) returns the time instants when
the waveform crosses the lower-percent reference level, LT, and
upper-percent reference level, UT. If you do not specify lower- and
upper-percent reference levels, the levels default to 10% and 90%.

[S,LT,UT,LL,UL] = slewrate(...) returns the waveform values
that correspond to the lower-reference levels, LL, and upper-reference
levels, UL.

S = slewrate(...,Name,Value) returns the slew rate for all
transitions with additional options specified by one or more
Name,Value pair arguments.
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slewrate(...) plots the bilevel waveform and darkens the regions of
each transition where the slew rate is computed. The plot marks the
lower- and upper-reference level crossings and associated reference
levels. The plot indicates the state levels and associated lower and
upper tolerances.

Input
Arguments

X

Bilevel waveform as a real-valued column or row vector. If the input
waveform does not have at least one transition, slewrate returns an
empty matrix.

Fs

Sampling rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’PctRefLevels’

Percent reference levels. See “Percent Reference Levels” on page 1-1080
for a definition.

Default: [10,90]

’StateLevels’

Low- and high-state levels. StateLevels is a 1-by-2 real-valued
vector. The first element is the low-state level. The second element is
the high-state level. If you do not specify low- and high-state levels,
slewrate estimates the state levels from the input waveform using the
histogram method.

’Tolerance’
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Tolerance levels (lower and upper state boundaries) expressed as a
percentage. See “State-Level Tolerances” on page 1-1081.

Default: 2

Output
Arguments

S

Slew rates as real-valued scalars. A positive slew rate indicates that
the upper-percent reference level occurs later than the lower-percent
reference level. A negative slew rate indicates that the upper-percent
reference level occurs before the lower-percent reference level.

LT

Time instants when signal crosses the lower percent reference level.
If you do not specify the lower percent reference levels with the
'PctRefLevels' name-value pair, the lower percent reference level
is 10%.

UT

Time instants when signal crosses the upper-percent reference level.
If you do not specify the upper-percent reference levels with the
'PctRefLevels' name-value pair, the upper-percent reference level
is 90%.

LL

Waveform values at the lower-reference level.

UL

Waveform values at the upper-reference level.

Definitions Percent Reference Levels

If S1 is the low state, S2 is the high state, and U is the upper-percent
reference level. The waveform value corresponding to the upper-percent
reference level is
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S
U

S S1 2 1100
 ( )

If L is the lower-percent reference level, the waveform value
corresponding to the lower percent reference level is

S
L

S S1 2 1100
 ( )

Slew Rate

The slew rate is the slope of a line connecting the upper- and
lower-percent reference levels. Let tL denote the time instant when
the waveform crosses the lower reference level and tU denote the time
instant when the waveform crosses the upper percent reference level.
Using the definitions for the upper and lower percent reference levels
given in “Percent Reference Levels” on page 1-1080, the slew rate is
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When tL occurs earlier than tU, the slew rate is positive. When tU occurs
earlier than tL, the slew rate is negative.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )
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where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Slew Rate For One-Transition Waveform

Useslewrate with no output arguments to plot the slew rate
information for a step waveform sampled at 4 MHz.
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Load the transitionex.mat file and compute the slew rate.

load('transitionex.mat', 'x', 't');
slewrate(x, t)

Slew Rates for Three-Transition Waveform

Use the waveform in “Slew Rate For One-Transition Waveform” on
page 1-1083 to create a three-transition (two positive and one negative)
bilevel waveform. Obtain the slew rates for the three transitions.

load('transitionex.mat', 'x');
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y = [x ; fliplr(x)];
t = 0:1/4e6:(length(y)*(1/4e6))-1/4e6;
S = slewrate(y, t);

Lower and Upper Transition Times

Return the lower- and upper-transition times for the three-transition
waveform in“Slew Rates for Three-Transition Waveform” on page
1-1084 .

load('transitionex.mat', 'x');
y = [x ; fliplr(x)];
t = 0:1/4e6:(length(y)*(1/4e6))-1/4e6;
[S,LT,UT] = slewrate(y, t);
% or [S,LT,UT] = slewrate(y,4e6);

Lower and Upper Reference Levels

Return the waveform values corresponding to the lower- and
upper-reference levels for the three-transition waveform in“Slew Rates
for Three-Transition Waveform” on page 1-1084 . Compute these values
for the default 10% and 90% and for 20% and 80%.

load('transitionex.mat', 'x');
y = [x ; fliplr(x)];
t = 0:1/4e6:(length(y)*(1/4e6))-1/4e6;
[~,LT_1090,UT_1090,LL_1090,UL_1090] = slewrate(y, t);
[~,LT_2080,UT_2080,LL_2080,UL_2080] = slewrate(y, t,...

'PctRefLevels',[20 80]);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003.

See Also falltime | midcross | pulsewidth | risetime | settlingtime
| statelevels
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Purpose Convert second-order sections matrix to cell array

Syntax c = sos2cell(m)
c = sos2cell(m,g)

Description c = sos2cell(m) changes an L-by-6 second-order section matrix m
generated by tf2sos into a 1-by-L cell array of 1-by-2 cell arrays c. You
can use c to specify a quantized filter with L cascaded second-order
sections.

The matrix m should have the form

m = [b1 a1;b2 a2; ... ;bL aL]

where both bi and ai, with i = 1, ..., L, are 1-by-3 row vectors. The
resulting c is a 1-by-L cell array of cells of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

c = sos2cell(m,g) with the optional gain term g, prepends the
constant value g to c. When you use the added gain term in the
command, c is a 1-by-L cell array of cells of the form

c = {{g,1} {b1,a1} {b2,a2}...{bL,aL} }

Examples Use sos2cell to convert the 2-by-6 second-order section matrix
produced by tf2sos into a 1-by-2 cell array c of cells. Display the second
entry in the first cell in c:

[b,a] = ellip(4,0.5,20,0.6);
m = tf2sos(b,a);
c = sos2cell(m);
c{1}{2}
ans =

1.0000 0.1677 0.2575

See Also tf2sos | cell2sos
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Purpose Convert digital filter second-order section parameters to state-space
form

Syntax [A,B,C,D] = sos2ss(sos)
[A,B,C,D] = sos2ss(sos,g)

Description sos2ss converts a second-order section representation of a given digital
filter to an equivalent state-space representation.

[A,B,C,D] = sos2ss(sos) converts the system sos, in second-order
section form, to a single-input, single-output state-space representation.
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The discrete transfer function in second-order section form is given by
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sos is a L-by-6 matrix organized as

sos

b b b a a
b b b a a

b b b a aL L L L L

=

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1
1

1
     

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The entries of sos must be real for proper conversion to state space.
The returned matrix A is size N-by-N, where N = L− B is a length N−1
column vector, C is a length N−1 row vector, and D is a scalar.

[A,B,C,D] = sos2ss(sos,g) converts the system sos in second-order
section form with gain g.
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H z g H zk
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( ) ( )=

=
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1

Examples Compute the state-space representation of a simple second-order
section system with a gain of 2:

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[A,B,C,D] = sos2ss(sos)
A =

-10 0 10 1
1 0 0 0
0 1 0 0
0 0 1 0

B =
1
0
0
0

C =
21 2 -16 -1

D =
-2

Algorithms sos2ss first converts from second-order sections to transfer function
using sos2tf, and then from transfer function to state-space using
tf2ss.

See Also sos2tf | sos2zp | ss2sos | tf2ss | zp2ss
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Purpose Convert digital filter second-order section data to transfer function form

Syntax [b,a] = sos2tf(sos)
[b,a] = sos2tf(sos,g)

Description sos2tf converts a second-order section representation of a given digital
filter to an equivalent transfer function representation.

[b,a] = sos2tf(sos) returns the numerator coefficients b and
denominator coefficients a of the transfer function that describes a
discrete-time system given by sos in second-order section form. The
second-order section format of H(z) is given by

H z H z
b b z b z

a z a z
k

k k k

k kk

L

k

L
( ) ( )= =

+ +
+ +

− −

− −
==
∏∏ 0 1

1
2

2

1
1

2
2

11 1

sos is an L-by-6 matrix that contains the coefficients of each
second-order section stored in its rows.
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Row vectors b and a contain the numerator and denominator coefficients
of H(z) stored in descending powers of z.
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[b,a] = sos2tf(sos,g) returns the transfer function that describes
a discrete-time system given by sos in second-order section form with
gain g.
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H z g H zk
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Examples Compute the transfer function representation of a simple second-order
section system:

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[b,a] = sos2tf(sos)
b =

-2 1 2 4 1
a =

1 10 0 -10 -1

Algorithms sos2tf uses the conv function to multiply all of the numerator and
denominator second-order polynomials together. For higher order
filters (possibly starting as low as order 8), numerical problems due to
roundoff errors may occur when forming the transfer function.

See Also latc2tf | sos2ss | sos2zp | ss2tf | tf2sos | zp2tf
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Purpose Convert digital filter second-order section parameters to zero-pole-gain
form

Syntax [z,p,k] = sos2zp(sos)
[z,p,k] = sos2zp(sos,g)

Description sos2zp converts a second-order section representation of a given digital
filter to an equivalent zero-pole-gain representation.

[z,p,k] = sos2zp(sos) returns the zeros z, poles p, and gain k of the
system given by sos in second-order section form. The second-order
section format of H(z) is given by
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sos is an L-by-6 matrix that contains the coefficients of each
second-order section in its rows.

sos

b b b a a
b b b a a

b b b a aL L L L L

=

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1
1

1
     

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Column vectors z and p contain the zeros and poles of the transfer
function H(z).
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where the orders n and m are determined by the matrix sos.

[z,p,k] = sos2zp(sos,g) returns the zeros z, poles p, and gain k of
the system given by sos in second-order section form with gain g.
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H z g H zk
k
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∏
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Examples Compute the poles, zeros, and gain of a simple system in second-order
section form:

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[z,p,k] = sos2zp(sos)
z =

-0.5000 + 0.8660i
-0.5000 - 0.8660i
1.7808

-0.2808
p =

-1.0000
1.0000

-9.8990
-0.1010

k =
-2

Algorithms sos2zp finds the poles and zeros of each second-order section by
repeatedly calling tf2zp.

See Also sos2ss | sos2tf | ss2zp | tf2zp | tf2zpk | zp2sos
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Purpose Second-order (biquadratic) IIR digital filtering

Syntax y = sosfilt(sos,x)
y = sosfilt(sos,x,dim)

Description y = sosfilt(sos,x) applies the second-order section digital filter sos
to the vector x. The output, y, is the same length as x.

Note If either input to sosfilt is single precision, filtering is
implemented using single-precision arithmetic. The output, y, is single
precision.

sos represents the second-order section digital filter H(z)

H z H z
b b z b z

a z a z
k

k k k

k kk

L

k

L
( ) ( )= =

+ +
+ +

− −

− −
==
∏∏ 0 1

1
2

2

1
1

2
2

11 1

by an L-by-6 matrix containing the coefficients of each second-order
section in its rows.

sos
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If x is a matrix, sosfilt applies the filter to each column of x
independently. The output y is a matrix of the same size, containing the
filtered data corresponding to each column of x.

If x is a multidimensional array, sosfilt filters along the first
nonsingleton dimension. The output y is a multidimensional array of
the same size as x, containing the filtered data corresponding to each
row and column of x.
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The second order sections matrix,sos, the input signal,x, or both can
be double or single precision. If at least one input is single precision,
filtering is done with single precision arithmetic.

y = sosfilt(sos,x,dim) operates along the dimension dim.

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1996.

See Also filter | medfilt1 | sgolayfilt
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Purpose Spectrogram using short-time Fourier transform

Syntax S = spectrogram(x)
S = spectrogram(x,window)
S = spectrogram(x,window,noverlap)
S = spectrogram(x,window,noverlap,nfft)
S = spectrogram(x,window,noverlap,nfft,fs)
[S,F,T] = spectrogram(...)
[S,F,T] = spectrogram(x,window,noverlap,F)
[S,F,T] = spectrogram(x,window,noverlap,F,fs)
[S,F,T,P] = spectrogram(...)
spectrogram(...,FREQLOCATION)
spectrogram(...)

Description spectrogram, when used without any outputs, plots a spectrogram or,
when used with an S output, returns the short-time Fourier transform of
the input signal. To create a spectrogram from the returned short-time
Fourier transform data, refer to the [S,F,T,P] syntax described below.

S = spectrogram(x) returns S, the short time Fourier transform of the
input signal vector x. By default, x is divided into eight segments. If x
cannot be divided exactly into eight segments, it is truncated. These
default values are used.

• window is a Hamming window of length nfft.

• noverlap is the number of samples that each segment overlaps.
The default value is the number producing 50% overlap between
segments.

• nfft is the FFT length and is the maximum of 256 or the next power
of 2 greater than the length of each segment of x. Instead of nfft, you
can specify a vector of frequencies, F. See below for more information.

• fs is the sampling frequency, which defaults to normalized frequency.

Each column of S contains an estimate of the short-term, time-localized
frequency content of x. Time increases across the columns of S and
frequency increases down the rows.
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If x is a length Nx complex signal, S is a complex matrix with nfft rows
and k columns, where for a scalar window

k = fix((Nx-noverlap)/(window-noverlap))

or if window is a vector

k = fix((Nx-noverlap)/(length(window)-noverlap))

For real x, the output S has (nfft/2+1) rows if nfft is even, and
(nfft+1)/2 rows if nfft is odd.

S = spectrogram(x,window) uses the window specified. If window is
an integer, x is divided into segments equal to that integer value and
a Hamming window is used. If window is a vector, x is divided into
segments equal to the length of window and then the segments are
windowed using the window functions specified in the window vector.
For a list of available windows see “Windows”.

Note To obtain the same results for the removed specgram function,
specify a 'Hann’ window of length 256.

S = spectrogram(x,window,noverlap) overlaps noverlap samples of
each segment. noverlap must be an integer smaller than window or if
window is a vector, smaller than the length of window.

S = spectrogram(x,window,noverlap,nfft) uses the nfft number
of sampling points to calculate the discrete Fourier transform. nfft
must be a scalar.

S = spectrogram(x,window,noverlap,nfft,fs) uses fs sampling
frequency in Hz. If fs is specified as empty [], it defaults to 1 Hz.

[S,F,T] = spectrogram(...) returns a vector of frequencies, F, and a
vector of times, T, at which the spectrogram is computed. F has length
equal to the number of rows of S. T has length k (defined above) and the
values in T correspond to the center of each segment.
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[S,F,T] = spectrogram(x,window,noverlap,F) uses a vector F of
frequencies in Hz. F must be a vector with at least two elements.
This case computes the spectrogram at the frequencies in F using
the Goertzel algorithm. The specified frequencies are rounded to the
nearest DFT bin commensurate with the signal’s resolution. In all other
syntax cases where nfft or a default for nfft is used, the short-time
Fourier transform is used. The F vector returned is a vector of the
rounded frequencies. T is a vector of times at which the spectrogram
is computed. The length of F is equal to the number of rows of S. The
length of T is equal to k, as defined above and each value corresponds to
the center of each segment.

[S,F,T] = spectrogram(x,window,noverlap,F,fs) uses a vector F of
frequencies in Hz as above and uses the fs sampling frequency in Hz. If
fs is specified as empty [], it defaults to 1 Hz.

[S,F,T,P] = spectrogram(...) returns a matrix P containing the
power spectral density (PSD) of each segment. For real x, P contains the
one-sided modified periodogram estimate of the PSD of each segment.
For complex x and when you specify a vector of frequencies F, P contains
the two-sided PSD.

spectrogram(...,FREQLOCATION) specifies which axis to use as the
frequency axis in displaying the spectrogram. Specify FREQLOCATION
as a trailing string argument. Valid options are 'xaxis' or 'yaxis'.
The strings are not case sensitive. If you do not specify FREQLOCATION,
spectrogram uses the x-axis as the frequency axis by default.

The elements of the PSD matrix P are given by P i j k S i j( , ) | ( , )|= 2

where k is a real-valued scalar defined as follows

• For the one-sided PSD,

k

Fs w n
n

L
=

=
∑

2

2
1
| ( )|
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where w n( ) denotes the window function (Hamming by default) and
Fs is the sampling frequency. At zero and the Nyquist frequencies,
the factor of 2 in the numerator is replaced by 1.

• For the two-sided PSD,

k

Fs w n
n

L
=

=
∑

1

2

1
| ( )|

at all frequencies.

• If the sampling frequency is not specified, Fs is replaced in the
denominator by 2 .

spectrogram(...) plots the PSD estimate for each segment on a
surface in a figure window. The plot is created using

surf(T,F,10*log10(abs(P)));
axis tight;
view(0,90);

Using spectrogram(...,'freqloc') syntax and adding a 'freqloc'
string (either 'xaxis' or 'yaxis') controls where the frequency axis is
displayed. Using 'xaxis' displays the frequency on the x-axis. Using
'yaxis' displays frequency on the y-axis and time on the x-axis. The
default is 'xaxis'. If you specify both a 'freqloc' string and output
arguments, 'freqloc' is ignored.

Examples Compute and display the PSD of each segment of a quadratic chirp,
which starts at 100 Hz and crosses 200 Hz at t = 1 sec.

T = 0:0.001:2;
X = chirp(T,100,1,200,'q');
spectrogram(X,128,120,128,1E3);
title('Quadratic Chirp');
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Compute and display the PSD of each segment of a linear chirp, which
starts at DC and crosses 150 Hz at t = 1 sec.

T = 0:0.001:2;
X = chirp(T,0,1,150);
[S,F,T,P] = spectrogram(X,256,250,256,1E3);
surf(T,F,10*log10(P),'edgecolor','none'); axis tight;
view(0,90);
xlabel('Time (Seconds)'); ylabel('Hz');
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 713-718.

[2] Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, Englewood Cliffs, NJ, 1978.

See Also goertzel | periodogram | pwelch | spectrum.periodogram |
spectrum.welch

How To • “Windows”
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Purpose Spectral estimation

Syntax Hs = spectrum.estmethod(input1,...)

Description Hs = spectrum.estmethod(input1,...) returns a spectral estimation
object Hs of type estmethod. This object contains all the parameter
information needed for the specified estimation method. Each
estimation method takes one or more inputs, which are described on the
individual reference pages.

Estimation Methods

Estimation methods for spectrum specify the type of spectral estimation
method to use. Available estimation methods for spectrum are listed
below.

Note You must use a spectral estmethod with spectrum.

Spectrum Estimation Methods

spectrum.estmethod Description Corresponding Function

spectrum.burg Burg pburg

spectrum.cov Covariance pcov

spectrum.eigenvector Eigenvector peig

spectrum.mcov Modified covariance pmcov

spectrum.mtm Thompson multitaper pmtm

spectrum.music Multiple Signal
Classification

pmusic

spectrum.periodogram Periodogram periodogram

spectrum.welch Welch pwelch

spectrum.yulear Yule-Walker pyulear
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For more information on each estimation method, use the syntax
help spectrum.estmethod at the MATLAB prompt or refer to its
reference page.

Note For estimation methods that use overlap and window length
inputs, you specify the number of overlap samples as a percent overlap
and you specify the segment length instead of the window length.

For estimation methods that use windows, if the window uses an
additional parameter, a property is dynamically added to the spectrum
object for that parameter. You can change that property using set (see
“Changing Object Properties” on page 1-1112).

Methods

Methods provide ways of performing functions directly on your
spectrum object without having to specify the spectral estimation
parameters again. You can apply these methods directly on the variable
you assigned to your spectrum object. For more information on any of
these methods, use the syntax help spectrum/method at the MATLAB
prompt or refer to the table below.

Spectrum Methods

Method Description

msspectrum Note that the msspectrum method is only available for the
periodogram and welch spectrum estimation objects.

The mean-squared spectrum is intended for discrete spectra (from
periodic, discrete-time signals). The distribution of the mean square
value across frequency is the msspectrum. Unlike the power spectral
density (see psd below), the peaks in the mean-square spectrum
reflect the power in the signal at a given frequency. For the PSD, the
power is reflected as the area in a frequency band. The units of the
mean-squared spectrum are units of power.
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Spectrum Methods (Continued)

Method Description

Hmss = msspectrum(Hs,X) returns a mean-square spectrum object
containing the mean-square (power) estimate of the discrete-time
signal X using the spectrum object Hs. Default for real X is the
'onesided' Nyquist frequency range and for complex X the default
is the 'twosided' Nyquist frequency range.

Hmss contains a vector of normalized frequencies W, at which the
mean-square spectrum is estimated. For real signals, the range of W
is [0,π] if the number of FFT points (NFFT) is even, and [0,π) if NFFT
is odd. For complex signals, the range of W is [0,2π). To estimate the
spectrum on a vector of specific frequencies, see FreqPoints property
below.

The msspectrum method includes these properties, which you can set
using this msspectrum method or via the msspectrumopts method.
These properties are listed here and described in the msspectrumopts
section below:

SpectrumType— 'onesided' or 'twosided'
NormalizedFrequency – normalizes frequency between 0 and 1
Fs— sampling frequency in Hz
NFFT— number of FFT points
CenterDC— shifts data and frequencies to center DC component
FreqPoints— 'All' or 'User Defined'
FrequencyVector— frequencies at which to compute spectrum
ConfLevel — confidence level to calculate the confidence interval.
Value must be from 0 to 1.

For example, Hmss = msspectrum(Hs,X,'FreqPoints','User
Defined', FreqVector,fvect) returns a mean-square spectrum
object where the spectrum is calculated only on the frequency points
defined in the frequency vector, fvect.
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Spectrum Methods (Continued)

Method Description

msspectrum(...) with no output arguments plots the mean-square
spectrum in dB.

msspectrumopts Hopts = msspectrumopts(Hs) returns an object that contains
options for the spectrum object Hs.

Hopts = msspectrumopts(Hs,X) returns an object with data-specific
options and defaults.

You can pass an Hopts options object as an argument to the
msspectrum method. Any individual option you specify after
the Hopts object overrides the value in Hopts. For example,
Hmss = msspectrum(Hs,X,Hopts, 'SpectrumType', 'twosided')
overrides the default SpectrumType value in Hopts.

The following properties apply to both msspectrumopts and
msspectrum methods.

Hmss = msspectrum (..., 'SpectrumType', 'twosided') returns
the two-sided mean-square spectrum. The spectrum length (NFFT)
is computed over [0,2π), or if Fs is specified, [0,Fs) . Entering
'onesided' returns the one-sided mean-square spectrum, which
contains the total signal power in half the Nyquist range. Default
is 'onesided'.

Hmss = msspectrum(Hs,X,'NormalizedFrequency',true) returns
a mean-square spectrum object with frequency values normalized
between 0 and 1. Default is true.

Hmss = msspectrum(Hs,X,'Fs',Fs) returns a mean-square
spectrum object computed as a function of frequency, where Fs is
the sampling frequency in Hz. Note that you can set Fs only if
NormalizedFrequency is set to false.

Hmss = msspectrum(...,'NFFT',nfft) specifies the number of
FFT points to use. Valid values are a positive integer, 'Nextpow2'
or 'Auto'. 'Nextpow2' uses the next power of 2 greater than the
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Spectrum Methods (Continued)

Method Description

input length or 256, whichever is greater. 'Auto' uses the input
length or 256, whichever is greater. Default is 'Nextpow2'. Note that
for spectrum.welch, 'Nextpow2' and 'Auto' are compared to the
SegmentLength instead of the input length.

Hmss = msspectrum (..., 'Centerdc', true) shifts the data and
frequency values so that the DC component is at the center of the
spectrum. Default is false.

To estimate the spectrum on a vector of specific frequencies, first set
the number of frequency points to 'User Defined', which replaces
the NFFT property of msspectrum with a FrequencyVector property.
Hopts.FreqPoints = 'User Defined'
(Note that the default for FreqPoints is 'All', which causes
msspectrum to use the NFFT property as described above.)

Then, specify the frequency vector F to use.
Hopts.FrequencyVector = F
(Note that the default value for FrequencyVector is 'Auto'. In this
case, the number of frequency points used follows the same rule as
described for NFFT 'Auto' above.)

Hmms = msspectrum(...,'ConfLevel',p) specifies the confidence
level p for computing the confidence interval, which is an
estimate of the error in the calculated mean-squared spectrum.
The confidence level (p) is between 0 and 1. For example,
Hmss = msspectrum(Hs,X,'ConfLevel',0.95) returns the 95%
confidence interval.
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Spectrum Methods (Continued)

Method Description

psd Note that music and eigenvector spectrum objects do not support
the psd method. See the pseudospectrum method below.

The power spectral density (PSD) is intended for continuous spectra.
The integral of the PSD over a given frequency band computes the
average power in the signal in that frequency band. In contrast to
the msspectrum, the peaks in this spectra do not reflect the power
at a given frequency. The units of the PSD are power per unit of
frequency. See the avgpowermethod of dspdata for more information.

Hpsd = psd (Hs,X) returns a power spectral density object
containing the power spectral density estimate of the discrete-time
signal X using the spectrum object Hs. The PSD is the distribution of
power per unit frequency. Default for real X is 'onesided' and for
complex X is 'twosided'.

Hpsd contains a vector of normalized frequencies W, at which the PSD
is estimated. For real signals, the range of W is [0,π] if the number
of FFT points (NFFT) is even, and [0,π) if NFFT is odd. For complex
signals, the range of W is [0,2π).

The psd method includes these properties, which you can set using
this psd method or via the psdopts method. These properties are
listed here and described in the psdopts section below:

SpectrumType— 'onesided' or 'twosided'
NormalizedFrequency— normalizes frequency between 0 and 1
Fs— sampling frequency in Hz
NFFT— number of FFT points
CenterDC— shifts data and frequencies to center DC component
FreqPoints— 'All' or 'User Defined'
FrequencyVector – frequencies at which to compute spectrum
ConfLevel — confidence level to calculate the confidence interval.
Value must be from 0 to 1.

1-1106



spectrum

Spectrum Methods (Continued)

Method Description

For example, Hmss = psd(Hs,X,'FreqPoints','User Defined',
FreqVector,fvect) returns a PSD object where the spectrum is
calculated only on the frequency points defined in the frequency
vector, fvect.

psd(...) with no output arguments plots PSD in dB per unit
frequency.

psdopts Hopts = psdopts(Hs) returns an object that contains options for the
spectrum object Hs.

Hopts = psdopts(Hs,X) returns an object with data-specific options
and defaults.

You can pass an Hopts options object as an argument to
the psd method. Any individual option you specify after the
Hopts object overrides the value in Hopts. For example,
Hpsd = psd(Hs,X,Hopts,'SpectrumType', 'twosided') overrides
the SpectrumType value in Hopts.

The following properties apply to both psdmopts and psd methods.

Hpsd = psd (Hs,X,'SpectrumType','twosided') returns the
two-sided power spectral density of X. The spectrum length is NFFT
and is computed over [0,2π) if Fs is not specified or [0,Fs) if Fs is
specified. Entering 'onesided' returns the one-sided PSD, which
contains the total signal power.

Hmss = psd(Hs,X,'NormalizedFrequency',true) returns a power
spectral density object with frequency values normalized between
0 and 1. Default is true.

Hpsd = psd (...,'Fs',Fs) returns a power spectral density object
computed as a function of frequency, where Fs is the sampling
frequency in Hz.
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Spectrum Methods (Continued)

Method Description

Hmss = psd(...,'NFFT',nfft) specifies the number of FFT points
to use. Valid values are a positive integer, 'Nextpow2' or 'Auto'.
'Nextpow2' uses the next power of 2 greater than the input length
or 256, whichever is greater. 'Auto' uses the input length or
256, whichever is greater. Default is 'Nextpow2'. Note that for
spectrum.welch, 'Nextpow2' and 'Auto' are compared to the
SegmentLength instead of the input length.

Hmss = psd (..., 'Centerdc', true) shifts the data and
frequency values so that the DC component is at the center of the
spectrum. Default is false.

To estimate the spectrum on a vector of specific frequencies, first set
the number of frequency points to 'User Defined', which replaces
the NFFT property of psd with a FrequencyVector property.
Hopts.FreqPoints = 'User Defined'
(Note that the default for FreqPoints is 'All' which causes psd to
use the NFFT property as described above.)

Hmms = psd(...,'ConfLevel',p) specifies the confidence level p for
computing the confidence interval, which is an estimate of the error
in the calculated PSD. The confidence level (p) is between 0 and 1.
For example, Hmss = psd(Hs,X,'ConfLevel',0.95) returns the
95% confidence interval.
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Spectrum Methods (Continued)

Method Description

pseudospectrum Note that this method is used for only music or eigenvector
spectrum objects.

Hps = pseudospectrum(Hs,X) returns an object containing the
pseudospectrum estimate of the discrete-time signal X using the
spectrum object Hs. Hs must be a music or eigenvector object.
Default for real X is 'half' and for complex X is the 'whole' Nyquist
frequency range.

Hps contains a vector of normalized frequencies W, at which the
pseudospectrum is estimated. For real signals, the range of W is [0,π]
if the number of FFT points (NFFT) is even, and [0,π) if NFFT is odd.
For complex signals, the range of W is [0,2π).

The pseudospectrum method includes these properties, which
you can set using this pseudospectrum method or via the
pseudospectrumopts method. These properties are described below:

SpectrumRange— 'half' or 'whole'
NormalizedFrequency— normalizes frequency between 0 and 1
Fs— sampling frequency in Hz
NFFT— number of FFT points
CenterDC— shifts data and frequencies to center DC component
FreqPoints— 'All' or 'User Defined'
FrequencyVector— frequencies at which to compute spectrum

For example, Hmss = psd(Hs,X,'FreqPoints','User Defined',
FreqVector,fvect) returns a PSD object where the spectrum is
calculated only on the frequency points defined in the frequency
vector, fvect.

pseudospectrum(...) with no output arguments plots the
pseudospectrum in dB.
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Spectrum Methods (Continued)

Method Description

pseudo-
spectrumopts

Hopts = pseudospectrumopts(Hs) returns an object that contains
options for the spectrum object Hs.

Hopts = pseudospectrumopts(Hs,X) returns an object with
data-specific options and defaults. You can pass an Hopts options
object as an argument to the pseudospectrummethod. Any individual
option you specify after the Hopts object overrides the value in
Hopts. For example, Hpseudospectrum= pseudospectrum(Hs,X,
Hopts,'SpectrumRange', 'whole') overrides the SpectrumRange
value in Hopts.

Hmps = pseudospectrum (..., 'SpectrumRange', 'whole')
returns the pseudospectrum over the whole Nyquist range. The
spectrum length is NFFT and is computed over [0,2π) if Fs is not
specified or [0,Fs) if Fs is specified. Entering 'half' returns the
pseudospectrum calculated over half the Nyquist range.

Hmss = pseudospectrum(Hs,X,'NormalizedFrequency',true)
returns a pseudospectrum object with frequency values normalized
between 0 and 1. Default is true.

Hps = pseudospectrum(Hs,X,'Fs',Fs) returns a pseudospectrum
object computed as a function of frequency, where Fs is the sampling
frequency in Hz.

Hps = pseudospectrum(...,'NFFT',nfft) specifies the number of
FFT points to use. Valid values are a positive integer, 'Nextpow2' or
'Auto'. 'Nextpow2' uses the next power of 2 greater than the input
length or 256, whichever is greater. 'Auto' uses the input length or
256, whichever is greater. Default is 'Nextpow2'.

Hps = pseudospectrum(...,'Centerdc',true) shifts the data and
frequency values so that the DC component is at the center of the
spectrum. The default value is false.

To estimate the spectrum on a vector of specific frequencies, first set
the number of frequency points to 'User Defined', which replaces
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Spectrum Methods (Continued)

Method Description

the NFFT property of pseudospectrum with a FrequencyVector
property.
Hopts.FreqPoints = 'User Defined'
(Note that the default for FreqPoints is 'All', which causes
pseudospectrum to use the NFFT property as described above.)

powerest Note that powerest is available only for music and eigenvector
spectrum objects.

POW = powerest(Hs,X) returns a vector POW containing estimates of
the powers of the complex sinusoids in X. The input X can be a vector

or a matrix. If it is a matrix it can be a data matrix, where X X R’* =
or a correlation matrix R. The value the InputType property of Hs
determines how X is interpreted. Hs must be a music or eigenvector
spectrum object.

[POW,W]=powerest(Hs,X) returns POW and a vector W of the
frequencies in rad/sample of the sinusoids in X.

[POW,F]=powerest(Hs,X,Fs) returns POW and a vector F of the
frequencies in Hz of the sinusoids in X. Fs is the sampling frequency.

Viewing Object Properties

As with any object, you can use get to view a spectrum object’s
properties. To see a specific property, use

get(Hs,'property')

where 'property' is the specific property name.

To see all properties for an object, use

get(Hs)
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Changing Object Properties

To set specific properties, use

set(Hs,'property1',value, 'property2',value,...)

where 'property1', 'property2', etc. are the specific property names.

To view the options for a property use set without specifying a value

set(Hs,'property')

Note that you must use single quotation marks around the property
name. For example, to change the order of a Burg spectrum object Hs
to 6, use

set(Hs,'order',6)

Another example of using set to change an object’s properties is this
example of changing the dynamically created window property of a
periodogram spectrum object.

Hs=spectrum.periodogram % Create periodogram object

Hs =

EstimationMethod: 'Periodogram'
WindowName: 'Rectangular'

set(Hs,'WindowName','Chebyshev') % Change window type
Hs % View changed object

Hs =

EstimationMethod: 'Periodogram'
WindowName: 'Chebyshev' % Note changed property

SidelobeAtten: 100

set(Hs,'SidelobeAtten',150) % Change dynamic property
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Hs % View changed object

Hs =

EstimationMethod: 'Periodogram'
WindowName: 'Chebyshev'

SidelobeAtten: 150

All spectrum object properties can be changed using the set command,
except for the EstimationMethod property.

Another way to change an object’s properties is by using the inspect
command which opens the Property Inspector window where you can
edit any property, except dynamic properties, such as those used with
windows.

inspect(Hs)

Copying an Object

To create a copy of an object, use the copy method.

H2 = copy(Hs)

Note Using the syntax H2 = Hs copies only the object handle and does
not create a new object.

Examples Define a cosine of 200 Hz, add some noise and then view its power
spectral density estimate generated with the periodogram algorithm.

Fs = 1000;
t = 0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,x,'Fs',Fs)
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Refer to the reference pages for each estimation method for more
examples.

See Also dspdata | spectrum.burg | spectrum.cov | spectrum.mcov |
spectrum.yulear | spectrum.periodogram | spectrum.welch |
spectrum.mtm | spectrum.eigenvector | spectrum.music
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Purpose Burg spectrum

Syntax Hs = spectrum.burg
Hs = spectrum.burg(order)

Description Hs = spectrum.burg returns a default Burg spectrum object, Hs, that
defines the parameters for the Burg parametric spectral estimation
algorithm. The Burg algorithm estimates the spectral content by fitting
an autoregressive (AR) linear prediction filter model of a given order to
the signal.

Hs = spectrum.burg(order) returns a spectrum object, Hs with the
specified order. The default value for order is 4.

Note See pburg for more information on the Burg algorithm.

Examples Define a fourth order autoregressive model and view its power spectral
density using the Burg algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.burg; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata | spectrum | spectrum.cov | spectrum.mcov |
spectrum.yulear | spectrum.periodogram | spectrum.welch |
spectrum.mtm | spectrum.eigenvector | spectrum.music
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Purpose Covariance spectrum

Syntax Hs = spectrum.cov
Hs = spectrum.cov(order)

Description Hs = spectrum.cov returns a default covariance spectrum object, Hs,
that defines the parameters for the covariance spectral estimation
algorithm. The covariance algorithm estimates the spectral content
by fitting an autoregressive (AR) linear prediction model of a given
order to the signal.

Hs = spectrum.cov(order) returns a spectrum object, Hs with the
specified order. The default value for order is 4.

Note See pcov for more information on the covariance algorithm.

Examples Define a fourth order autoregressive model and view its power spectral
density using the covariance algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.cov; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata | spectrum | spectrum.burg | spectrum.mcov |
spectrum.yulear | spectrum.periodogram | spectrum.welch |
spectrum.mtm | spectrum.eigenvector | spectrum.music
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Purpose Eigenvector spectrum

Syntax Hs = spectrum.eigenvector
Hs = spectrum.eigenvector(NSinusoids)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType)

Description Hs = spectrum.eigenvector returns a default eigenvector spectrum
object, Hs, that defines the parameters for an eigenanalysis spectral
estimation method. This object uses the following default values:

Default Values

Property Name Default Value Description

NSinusoids 2 Number of complex sinusoids

SegmentLength 4 Length of each of the time-based
segments into which the input signal
is divided.

OverlapPercent 50 Percent overlap between segments

1-1117



spectrum.eigenvector

Default Values (Continued)

Property Name Default Value Description

WindowName 'Rectangular' Window name string or 'User
Defined' (see window for valid
window names). For more
information on each window, refer
to its reference page.

This argument can also be a cell
array containing the window name
string or 'User Defined' and, if
used for the particular window,
an optional parameter value. The
syntax is {wname,wparam}.

You can use set to change
the value of the additional
parameter or to define the MATLAB
expression and parameters for a
user-defined window (see spectrum
for information on using set).

SubspaceThreshold 0 Threshold is the cutoff for signal
and noise separation. The
threshold is multiplied by λmin ,
the smallest estimated eigenvalue
of the signal’s correlation matrix.
Eigenvalues below the threshold
(λmin*threshold) are assigned to
the noise subspace.

InputType 'Vector' Type of input that will be used with
this spectrum object. Valid values
are 'Vector', 'DataMatrix' and
'CorrelationMatrix'.
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Hs = spectrum.eigenvector(NSinusoids) returns a spectrum object,
Hs, with the specified number of sinusoids and default values for all
other properties. Refer to the table above for default values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a
spectrum object, Hs, with the specified segment length.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent) returns a spectrum object, Hs, with the specified
overlap between segments.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName) returns a spectrum object, Hs, with the
specified window.

Note Window names must be enclosed in single quotes,
such as spectrum.eigenvector(3,32,50,'chebyshev') or
spectrum.eigenvector(3,32,50,{'chebyshev',60}).

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold) returns a
spectrum object, Hs, with the specified subspace threshold.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType)
returns a spectrum object, Hs, with the specified input type.

Note See peig for more information on the eigenanalysis algorithm.

Examples Define a complex signal with three sinusoids, add noise, and view its
pseudospectrum using eigenanalysis. Set the FFT length to 128.

n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.eigenvector(3,32,95,'rectangular',5);
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pseudospectrum(Hs,s,'NFFT',128)

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66
(January 1978).

See Also dspdata | spectrum | spectrum.music | spectrum.burg
| spectrum.cov | spectrum.mcov | spectrum.yulear |
spectrum.periodogram | spectrum.welch | spectrum.mtm
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Purpose Modified covariance spectrum

Syntax Hs = spectrum.mcov
Hs = spectrum.mcov(order)

Description Hs = spectrum.mcov returns a default modified covariance spectrum
object, Hs, that defines the parameters for the modified covariance
spectral estimation algorithm. The modified covariance algorithm
estimates the spectral content by fitting an autoregressive (AR) linear
prediction filter model of a given order to the signal.

Hs = spectrum.mcov(order) returns a spectrum object, Hs with the
specified order. The default value for order is 4.

Note See pmcov for more information on the modified covariance
algorithm.

Examples Define a fourth order autoregressive model and view its power spectral
density using the modified covariance algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.mcov; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata | spectrum | spectrum.burg | spectrum.cov |
spectrum.yulear | spectrum.periodogram | spectrum.welch |
spectrum.mtm | spectrum.eigenvector | spectrum.music
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Purpose Thomson multitaper spectrum

Syntax Hs = spectrum.mtm
Hs = spectrum.mtm(TimeBW)
Hs = spectrum.mtm(DPSS,Concentrations)
Hs = spectrum.mtm(...,CombineMethod)

Description Hs = spectrum.mtm returns a default Thomson multitaper spectrum
object, Hs that defines the parameters for the Thomson multitaper
spectral estimation algorithm, which uses a linear or nonlinear
combination of modified periodograms. The periodograms are computed
using a sequence of orthogonal tapers (windows in the frequency
domain) specified from discrete prolate spheroidal sequences (dpss).
This object uses the following default values:

Property Name
Default
Value Description

TimeBW 4 Product of time and bandwidth
for the discrete prolate spheroidal
sequences (or Slepian sequences)
used as data windows

CombineMethod 'adaptive' Algorithm for combining the
individual spectral estimates.
Valid values are 'adaptive' —
adaptive (nonlinear) 'unity'
— unity weights (linear)
'eigenvector' — Eigenvalue
weights (linear)

Hs = spectrum.mtm(TimeBW) returns a spectrum object, Hs with the
specified time-bandwidth product.

Hs = spectrum.mtm(DPSS,Concentrations) returns a spectrum
object, Hs with the specified dpss data tapers and their concentrations.
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Note You can either specify the time-bandwidth product (TimeBW) or
the DPSS data tapers and their Concentrations. See dpss and pmtm
for more information.

Hs = spectrum.mtm(...,CombineMethod) returns a spectrum object,
Hs, with the specified method for combining the spectral estimates.
Refer to the table above for valid CombineMethod values.

Examples Define a cosine of 200 Hz, add noise and view its power spectral density
using the Thomson multitaper algorithm with a time-bandwidth
product of 3.5.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.mtm(3.5);
psd(Hs,x,'Fs',Fs)
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The above example could be done by specifying the data tapers and
concentrations instead of the time-bandwidth product.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
[e,v]=dpss(length(x),3.5);
Hs=spectrum.mtm(e,v);
psd(Hs,x,'Fs',Fs)

See Also dspdata | spectrum | spectrum.periodogram | spectrum.welch |
spectrum.burg | spectrum.cov | spectrum.mcov | spectrum.yulear
| spectrum.eigenvector | spectrum.music
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Purpose Multiple signal classification spectrum

Syntax Hs = spectrum.music
Hs = spectrum.music(NSinusoids)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType)

Description Hs = spectrum.music returns a default multiple signal classification
(MUSIC) spectrum object, Hs, that defines the parameters for the
MUSIC spectral estimation algorithm, which uses Schmidt’s eigenspace
analysis algorithm. This object uses the following default values.

Default Values

Property Name Default Value Description

NSinusoids 2 Number of complex
sinusoids

SegmentLength 4 Length of each of the
time-based segments into
which the input signal is
divided.

OverlapPercent 50 Percent overlap between
segments
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Default Values (Continued)

Property Name Default Value Description

WindowName 'Rectangular' Window name string
or 'User Defined'
(see window for valid
window names). For
more information on
each window, refer to its
reference page).

This argument can also
be a cell array containing
the window name string
or 'User Defined' and,
if used for the particular
window, an optional
parameter value. The
syntax is {wname,wparam}.

You can use set to change
the value of the additional
parameter or to define
the MATLAB expression
and parameters for a
user-defined window (see
spectrum for information
on using set).
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Default Values (Continued)

Property Name Default Value Description

SubspaceThreshold 0 Threshold is the cutoff for
signal and noise separation.
The threshold is multiplied
by λmin , the smallest
estimated eigenvalue of the
signal’s correlation matrix.
Eigenvalues below the
threshold (λmin*threshold)
are assigned to the noise
subspace.

InputType 'Vector' Type of input that
will be used with this
spectrum object. Valid
values are 'Vector',
'DataMatrix' and
'CorrelationMatrix'.

Hs = spectrum.music(NSinusoids) returns a spectrum object, Hs,
with the specified number of sinusoids and default values for all other
properties. Refer to the table above for default values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a
spectrum object, Hs, with the specified segment length.

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent) returns a spectrum object, Hs, with the specified
overlap between segments.

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName) returns a spectrum object, Hs, with the
specified window.

1-1127



spectrum.music

Note Window names must be enclosed in single quotes,
such as spectrum.music(3,32,50,'chebyshev') or
spectrum.music(3,32,50,{'chebyshev',60})

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold) returns a
spectrum object, Hs, with the specified subspace threshold.

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType)
returns a spectrum object, Hs, with the specified input type.

Note See pmusic for more information on the MUSIC algorithm.

Examples Define a complex signal with three sinusoids, add noise, and estimate
its pseudospectrum using the MUSIC algorithm.

n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.music(3,20);
pseudospectrum(Hs,s)

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66
(January 1978).

See Also dspdata | spectrum | spectrum.eigenvector | spectrum.burg
| spectrum.cov | spectrum.mcov | spectrum.yulear |
spectrum.periodogram | spectrum.welch | spectrum.mtm
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Purpose Periodogram spectrum

Syntax Hs = spectrum.periodogram
Hs = spectrum.periodogram(winname)
Hs = spectrum.periodogram({winname,winparameter})

Description Hs = spectrum.periodogram returns a default periodogram spectrum
object, Hs, that defines the parameters for the periodogram spectral
estimation method. This default object uses a rectangular window and
a default FFT length equal to the next power of 2 (NextPow2) that is
greater than the input length.

Hs = spectrum.periodogram(winname) returns a spectrum object,
Hs, that uses the specified window. If the window uses an optional
associated window parameter, it is set to the default value. This object
uses the default FFT length.

Hs = spectrum.periodogram({winname,winparameter}) returns
a spectrum object, Hs, that uses the specified window and optional
associated window parameter, if any. You specify the window and
window parameter in a cell array with a windowname string and the
parameter value. This object uses the default FFT length.

Valid windowname strings are:

'Bartlett'
'Bartlett-Hanning'
'Blackman'
'Blackman-Harris'
'Bohman'
'Chebyshev'
'Flat Top'
'Gaussian'
'Hamming'
'Hann'
'Kaiser'
'Nuttall'
'Parzen'
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'Rectangular'
'Triangular'
'Tukey'
'User Defined'

See window and the corresponding window function page for window
parameter information.

You can use set to change the value of the additional parameter or
to define the MATLAB expression and parameters for a user-defined
window (see spectrum for information on using set).

Note Window names must be enclosed in single
quotes, such as spectrum.periodogram('tukey') or
spectrum.periodogram({'tukey',0.7}).

Note See periodogram for more information on the periodogram
algorithm.

Examples Define a cosine of 200 Hz, add noise and view its spectral content using
the periodogram spectral estimation technique.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.periodogram; % Use default values
psd(Hs,x,'Fs',Fs)
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References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66
(January 1978).

See Also dspdata | spectrum | spectrum.welch | spectrum.mtm |
spectrum.burg | spectrum.cov | spectrum.mcov | spectrum.yulear
| spectrum.eigenvector | spectrum.music
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Purpose Welch spectrum

Syntax Hs = spectrum.welch
Hs = spectrum.welch(WindowName)
Hs = spectrum.welch(WindowName,SegmentLength)
Hs = spectrum.welch(WindowName,SegmentLength,OverlapPercent)

Description Hs = spectrum.welch returns a default Welch spectrum object, Hs,
that defines the parameters for Welch’s averaged, modified periodogram
spectral estimation method. The object uses these default values.

Property Name Default Value Description

{WindowName,

winparam}

Cell array
containing
WindowName and
optional window
parameter

'Hamming',

SamplingFlag:
symmetric

Cell array containing the
window name string or
'User Defined' and, if
used for the particular
window, an optional
parameter value. (See
window for valid window
names and for more
information on each
window, refer to its
reference page.)

You can use set to change
the value of the additional
parameter or to define
the MATLAB expression
and parameters for a
user-defined window. (See
spectrum for information
on using set.)

WindowName 'Hamming’,

SamplingFlag:
symmetric

Valid windowname strings
are:

'Bartlett'

1-1132



spectrum.welch

Property Name Default Value Description

'Bartlett-Hanning'

'Blackman'

'Blackman-Harris'

'Bohman'

'Chebyshev'

'Flat Top'

'Gaussian'

'Hamming'

'Hann'

'Kaiser'

'Nuttall'

'Parzen'

'Rectangular'

'Triangular'

'Tukey'

'User Defined'

Window names must
be enclosed in single
quotes, such as
spectrum.welch('tukey')
or
spectrum.welch({'tukey',0.7}).

See window and the
corresponding window
function page for window
parameter information.
You can use set to
change the value of
the additional window
parameter or to define
the MATLAB expression
and parameters for a
user-defined window (see
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Property Name Default Value Description

spectrum for information
on using set).

SegmentLength 64 Length of each of the
time-based segments
into which the input
signal is divided. A
modified periodogram
is computed on each
segment and the average
of the periodograms
forms the spectral
estimate. Choosing
the segment length is
a compromise between
estimate reliability
(shorter segments) and
frequency resolution
(longer segments). A long
segment length produces
better resolution while
a short segment length
produces more averages,
and therefore a decrease in
the variance.

OverlapPercent 50% Percent overlap between
segments

Hs = spectrum.welch(WindowName) returns a spectrum object, Hs,
using Welch’s method with the specified window and the default values
for all other parameters. To specify parameters for a window, use a cell
array formatted as spectrum.welch({WindowName,winparam}).

Hs = spectrum.welch(WindowName,SegmentLength) returns a
spectrum object, Hs with the specified segment length.
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Hs = spectrum.welch(WindowName,SegmentLength,OverlapPercent)
returns a spectrum object, Hs with the specified percentage overlap
between segments.

Note See pwelch for more information on the Welch algorithm.

Examples Define a cosine of 200 Hz, add noise and view its spectral content using
the Welch algorithm.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.welch;
psd(Hs,x,'Fs',Fs)
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The following example produces a result similar to the obsoleted
spectrum function, which used a Hann window as the default.

Fs = 1000;
t = 0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
window=33;
noverlap=32;
nfft=4097;
h = spectrum.welch('Hann',window,100*noverlap/window);
hpsd = psd(h,x,'NFFT',nfft,'Fs',Fs);
Pw = hpsd.Data;
Fw = hpsd.Frequencies;

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66
(January 1978).

See Also dspdata | spectrum | spectrum.periodogram | spectrum.mtm |
spectrum.burg | spectrum.cov | spectrum.mcov | spectrum.yulear
| spectrum.eigenvector | spectrum.music
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Purpose Yule-Walker spectrum object

Syntax Hs = spectrum.yulear
Hs = spectrum.yulear(order)

Description Hs = spectrum.yulear returns a default Yule-Walker spectrum object,
Hs, that defines the parameters for the Yule-Walker spectral estimation
algorithm. This method is also called the auto-correlation or windowed
method. The Yule-Walker algorithm estimates the spectral content by
fitting an autoregressive (AR) linear prediction filter model of a given
order to the signal. This leads to a set of Yule-Walker equations, which
are solved using Levinson-Durbin recursion.

Hs = spectrum.yulear(order) returns a spectrum object, Hs, with the
specified order. The default value for order is 4.

Note See pyulear for more information on the Yule-Walker algorithm.

Examples Define a fourth order autoregressive model and view its spectral content
using the Yule-Walker algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.yulear; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata | spectrum | spectrum.burg | spectrum.cov |
spectrum.mcov | spectrum.periodogram | spectrum.welch |
spectrum.mtm | spectrum.eigenvector | spectrum.music
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Purpose Open interactive digital signal processing tool

Syntax sptool

Description The command, sptool, opens SPTool, a suite of four tools: Signal
Browser, Filter Design and Analysis Tool, FVTool, and Spectrum
Viewer. These tools provide access to many of the signal, filter, and
spectral analysis functions in the toolbox. When you type sptool at the
command line, the SPTool suite opens.

Using SPTool, you can:
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• Analyze signals listed in the Signals list box with the Signal
Browser.

• Design or edit filters with the Filter Design and Analysis Tool
(includes a Pole/Zero Editor).

• Analyze filter responses for filters listed in the Filters list box with
FVTool.

• Apply filters in the Filters list box to signals in the Signals list box.

• Create and analyze signal spectra with the Spectrum Viewer.

• Print the Signal Browser, Filter Design and Analysis Tool, and
Spectrum Viewer.

You can activate all four integrated signal processing tools from SPTool.

• “Signal Browser” on page 1-1139

• “Filter Design and Analysis Tool” on page 1-1183

• “Filter Visualization Tool” on page 1-1184

• “Spectrum Viewer” on page 1-1185

Signal
Browser

The Signal Browser, hereafter referred to as the scope, allows you to
view, measure, and analyze the time-domain information of one or more
signals. To activate the Signal Browser, press the View button under
the Signals list box in SPTool.
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See the following sections for more information on the Signal Browser:

• “Displaying Multiple Signals” on page 1-1141

• “Signal Display” on page 1-1144

• “Toolbar” on page 1-1147

• “Measurements Panels” on page 1-1151

• “Visuals — Time Domain Options” on page 1-1174

• “Style Dialog Box” on page 1-1180
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Displaying
Multiple
Signals

Multiple Signal Input

Select more than one signal in the Signals list box to show multiple
signals within the same display or on separate displays. By default,
the signals appear as different-colored lines on the same display. The
signals can have different dimensions, sample rates, and data types.
Each signal can be either real or complex valued.

Multiple Signal Colors
By default, Signal Browser has a white axes background and chooses
line colors for each channel in a manner similar to the MATLAB plot
function. Signal Browser considers each of the real and imaginary
components of the input signals to be a channel, and assigns each
channel a line color in the following order:

1 Blue

2 Dark Green

3 Red

4 Cyan

5 Purple

6 Dark Yellow

7 Black

If there are more than 7 channels, the scope repeats this order to
assign line colors to the remaining channels. For example, if you select
4 complex-valued input signals, the following legend appears in the
display.
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If all the input signals are real-valued, Signal Browser skips the line
colors that would be associated with their imaginary components. For
example, if you select 4 real-valued input signals, the following legend
appears in the display.

To manually modify any line color, select View > Style to open the
Style dialog box. Next to Properties for line, select the signal name
whose color you want to change. Then, next to Line, click the Line color

button ( ) and select any color from the palette. To change the axes

background color, click the Axes background color button ( ), and
select any color from the palette.

Multiple Displays

You can display multiple channels of data on different displays in the
scope window. In the scope toolbar, select View > Layout, or select the

Layout button ( ). This feature allows you to tile the window into a
number of separate displays, up to a grid of 4 rows and 4 columns. For
example, if there are three inputs to the scope, you can display the
signals in separate displays by selecting row 3, column 1, as shown in
the following figure.
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After you select row 3, column 1, the scope window is partitioned into
three separate displays, as shown in the following figure.
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When you use the Layout option to tile the window into multiple
displays, the display highlighted in blue is referred to as the active
display. The scope dialog boxes reference the active display.

Signal
Display

The Signal Browser uses the longest time length of all the input signals
selected in the Signals list box for the time range. To communicate
the array of times that corresponds to the current display, the scope
uses the Minimum time-axis limit, Time units, and Maximum
time-axis limit indicators on the scope window. The following figure
highlights these aspects of the Signal Browser window.
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• Minimum time-axis limit— The Signal Browser sets the minimum
time-axis limit to 0.

• Maximum time-axis limit — The Signal Browser sets the
maximum time-axis limit to the final time step of the longest input
signal.

• Time units — The units used to describe the time-axis. The Signal
Browser sets the time units using the value of the Time Units
parameter on the Main tab of the Visuals:Time Domain Options
dialog box. By default, this parameter is set to Metric (based on
Time Span) and displays in metric units such as microseconds,
milliseconds, minutes, days, etc. You can change the unit of measure
to Seconds to always display the time-axis values in units of seconds.
You can change it to None to suppress the display of units of measure
on the time-axis. When you set this parameter to None, then the
Signal Browser shows only the word Time on the time-axis.

To hide both the word Time and the values on the time-axis, set
the Show time-axis labels parameter to None. To hide both the
word Time and the values on the time-axis in all displays except the
bottom ones in each column of displays, set this parameter to Bottom
Displays Only. This behavior differs from that of the Simulink
Scope block, which always shows the values but never shows a label
on the x-axis.

Signal Names and Legend Strings

Signal Browser uses the names of the signals in the SPTool as the
strings displayed in the legends. If you change the name of any selected
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signal in the Signals list box, its corresponding legend string in Signal
Browser changes immediately. To change the name of any selected
signal, from the SPTool menu, select Edit > Name. Signal Browser
automatically updates the legend string to reflect the new signal name
you entered. Similarly, if you modify any string in a legend in Signal
Browser, SPTool updates the corresponding signal name in the Signals
list box.

Axes Maximization

You can specify whether to display the Signal Browser in maximized
axes mode. In this mode, the axes are expanded to fill the entire display.
In each display, there is no space to show titles or axis labels. The
minimum and maximum time-axis limits are located at the far-left and
far-right edges of the display. The values at the axis tick marks appear
as grid lines on top of the axes. The following figure highlights how
three displays appear in maximized axes mode in the Signal Browser
window.

To enable or disable this mode, in the Signal Browser menu, select
View > Properties to bring up the Visuals:Time Domain Options
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dialog box. In the Main pane, you can set the Maximize axes
parameter to one of the following options:

• Auto — In this mode, the axes appear maximized in all displays
only if the Title and Y-Axis label parameters are empty for every
display. If you enter any value in any display for either of these
parameters, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any
values entered into the Title and Y-Axis label parameters are
hidden.

• Off— In this mode, none of the axes appear maximized.

See the “Visuals — Time Domain Options” on page 1-1174 section for
more information.

Toolbar The Signal Browser toolbar contains the following buttons.

Print Button

ButtonMenu
Location

Shortcut
Keys

Description

File > Print Ctrl+P Print the current scope window. To
print the current scope window to a
figure rather than sending it to your
printer, select File > Print to figure.
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Axes Control Buttons

Tools >
Zoom In

N/A When this tool is active, you can zoom
in on the scope window. To do so, click
in the center of your area of interest,
or click and drag your cursor to draw
a rectangular area of interest inside
the scope window.

Tools >
Zoom X

N/A When this tool is active, you can zoom
in on the x-axis. To do so, click inside
the scope window, or click and drag
your cursor along the x-axis over your
area of interest.

Tools >
Zoom Y

N/A When this tool is active, you can zoom
in on the y-axis. To do so, click inside
the scope window, or click and drag
your cursor along the y-axis over your
area of interest.

Tools >
Pan

N/A When this tool is active, you can pan
on the scope window. To do so, click in
the center of your area of interest and
drag your cursor to the left, right, up,
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or down, to move the position of the
display.

Tools >
Scale Axes
Limits

Ctrl+A Click this button to scale the axes in
the active scope window.

Alternatively, you can enable
automatic axes scaling by selecting
one of the following options from the
Tools menu:

• Automatically Scale Axes Limits
— When you select this option, the
scope scales the axes as needed
during simulation.

• Scale Axes Limits after 10
Updates — When you select this
option, the scope scales the axes
after 10 updates. The scope does
not scale the axes again during the
simulation.

• Scale Axes Limits at Stop —
When you select this option, the
scope scales the axes each time the
simulation is stopped.
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Measurements Buttons

Tools >
Measurements >
Cursor
Measurements

N/A Open or close the Cursor
Measurements panel. This
panel puts screen cursors on all the
displays.

See the “Cursor Measurements Panel”
on page 1-1153 section for more
information.

Tools >
Measurements >
Signal
Statistics

N/A Open or close the Signal Statistics
panel. This panel displays the
maximum, minimum, peak-to-peak
difference, mean, median, RMS values
of a selected signal, and the times at
which the maximum and minimum
occur.

See the “Signal Statistics Panel”
on page 1-1155 section for more
information.

Tools >
Measurements >
Bilevel
Measurements

N/A Open or close the Bilevel
Measurements panel. This panel
displays information about a selected
signal’s transitions, overshoots or
undershoots, and cycles.

See the “Bilevel Measurements Panel”
on page 1-1156 section for more
information.

Tools >
Measurements >
Peak
Finder

N/A Open or close the Peak Finder panel.
This panel displays maxima and the
times at which they occur, allowing
the settings for peak threshold,
maximum number of peaks, and peak
excursion to be modified.

1-1150



sptool

See the “Peak Finder Panel” on page
1-1171 section for more information.

Other Buttons

Tools > Play
Selected
Signal

N/A Play an audio signal. The function
soundsc is used to play the signal.

View > Show
All Legends

N/A Show a legend that matches each line
style to a signal name in every display.

View > LayoutN/A Arrange the layout of displays in the
Signal Browser. This feature allows
you to tile your screen into a number
of separate displays, up to a grid
of 4 rows and 4 columns. You may
find multiple displays useful when
you select multiple input signals in
SPTool. The default display is 1 row
and 1 column. See the “Multiple
Displays” on page 1-1142 section for
more information.

You can control whether this toolbar appears in the Signal Browser
window. From the Signal Browser menu, select View > Toolbar.

Measurements
Panels

The Measurements panels are the five panels that appear at the right
side of the Signal Browser. These panels are labeled Trace selection,
Cursor measurements, Signal statistics, Bilevel measurements,
and Peak finder.

Measurements Panel Buttons

Each of the Measurements panels contains the following buttons that
enable you to modify the appearance of the current panel.
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Button Description

Move the current panel to the top. When you are displaying
more than one panel, this action moves the current panel
above all the other panels.

Collapse the current panel. When you first enable a panel, by
default, it displays one or more of its panes. Click this button
to hide all of its panes to conserve space. After you click this
button, it becomes the expand button .

Expand the current panel. This button appears after you
click the collapse button to hide the panes in the current
panel. Click this button to display the panes in the current
panel and show measurements again. After you click this
button, it becomes the collapse button again.

Undock the current panel. This button lets you move the
current panel into a separate window that can be relocated
anywhere on your screen. After you click this button, it
becomes the dock button in the new window.

Dock the current panel. This button appears only after you
click the undock button. Click this button to put the current
panel back into the right side of the Scope window. After you
click this button, it becomes the undock button again.

Close the current panel. This button lets you remove the
current panel from the right side of the Scope window.

Some panels have their measurements separated by category into a
number of panes. Click the pane expand button to show each pane
that is hidden in the current panel. Click the pane collapse button to
hide each pane that is shown in the current panel.

Trace Selection Panel

When you use the scope to view multiple signals, the Trace Selection
panel appears if you have more than one signal displayed and you
click on any of the other Measurements panels. The Measurements
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panels display information about only the signal chosen in this panel.
Choose the signal name for which you would like to display time domain
measurements. See the following figure.

You can choose to hide or display the Trace Selection panel. In the
Scope menu, select Tools > Measurements > Trace Selection.

Cursor Measurements Panel

The Cursor Measurements panel displays screen cursors. You
can choose to hide or display the Cursor Measurements panel.
In the Scope menu, select Tools > Measurements > Cursor
Measurements. Alternatively, in the Scope toolbar, click the Cursor

Measurements button.
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Settings Pane

The Settings pane enables you to modify the type of screen cursors
used to calculate time and value measurements.

• Screen Cursors— Shows screen cursors.

• Horizontal— Shows horizontal screen cursors.

• Vertical— Shows vertical screen cursors.

• Waveform Cursors— Shows cursors that attach to the input
signals.

• Lock Cursor Spacing— Locks the time difference between the two
cursors.

Measurements Pane

TheMeasurements pane shows the time and value measurements.

• 1 |— Shows or enables you to modify the time or value at cursor
number one, or both.

• 2 :— Shows or enables you to modify the time or value at cursor
number two, or both.

• Δt— Shows the absolute value of the difference in the times between
cursor number one and cursor number two.

• ΔV— Shows the absolute value of the difference in signal amplitudes
between cursor number one and cursor number two.

• 1/Δt— Shows the rate, the reciprocal of the absolute value of the
difference in the times between cursor number one and cursor
number two.

• ΔV/Δt— Shows the scope, the ratio of the absolute value of the
difference in signal amplitudes between cursors to the absolute value
of the difference in the times between cursors.
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Signal Statistics Panel

The Signal Statistics panel displays the maximum, minimum,
peak-to-peak difference, mean, median, and RMS values of a
selected signal. It also shows the x-axis indices at which the
maximum and minimum values occur. You can choose to hide or
display the Signal Statistics panel. In the Scope menu, select
Tools > Measurements > Signal Statistics. Alternatively, in the

scope toolbar, click the Signal Statistics button.

Signal Statistics Measurements

The Signal Statistics panel shows statistics about the portion of the
input signal within the x-axis and y-axis limits of the active display.
The statistics shown are:

• Max — Shows the maximum or largest value within the displayed
portion of the input signal. For more information on the algorithm
this measurement uses, see the MATLAB max function reference.

• Min— Shows the minimum or smallest value within the displayed
portion of the input signal. For more information on the algorithm
this measurement uses, see the MATLAB min function reference.

• Peak to Peak — Shows the difference between the maximum and
minimum values within the displayed portion of the input signal. For
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more information on the algorithm this measurement uses, see the
Signal Processing Toolbox peak2peak function reference.

• Mean — Shows the average or mean of all the values within the
displayed portion of the input signal. For more information on the
algorithm this measurement uses, see the MATLAB mean function
reference.

• Median — Shows the median value within the displayed portion
of the input signal. For more information on the algorithm this
measurement uses, see the MATLAB median function reference.

• RMS— Shows the difference between the maximum and minimum
values within the displayed portion of the input signal. For more
information on the algorithm this measurement uses, see the Signal
Processing Toolbox rms function reference.

When you use the zoom options in the Scope, the Signal Statistics
measurements automatically adjust to the time range shown in the
display. In the Scope toolbar, click the Zoom In or Zoom X button
to constrict the x-axis range of the display, and the statistics shown
reflect this time range. For example, you can zoom in on one pulse to
make the Signal Statistics panel display information about only that
particular pulse.

The Signal Statistics measurements are valid for any units of the input
signal. The letter after the value associated with each measurement
represents the appropriate International System of Units (SI) prefix,
such as m for milli-. For example, if the input signal is measured in
volts, an m next to a measurement value indicates that this value is
in units of millivolts.

Bilevel Measurements Panel

The Bilevel Measurements panel shows information about a
selected signal’s transitions, overshoots or undershoots, and cycles.
You can choose to hide or display the Bilevel Measurements
panel. In the Scope menu, select Tools > Measurements > Bilevel
Measurements. Alternatively, in the Scope toolbar, you can select the

Bilevel Measurements button.
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The Bilevel Measurements panel is separated into four panes, labeled
Settings, Transitions, Overshoots / Undershoots, and Cycles. You
can expand each pane to see the available options.

Settings Pane

The Settings pane enables you to modify the properties used to
calculate various measurements involving transitions, overshoots,
undershoots, and cycles. You can modify the high-state level, low-state
level, state-level tolerance, upper-reference level, mid-reference level,
and lower-reference level, as shown in the following figure.
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• Auto State Level — When this check box is selected, the Bilevel
measurements panel autodetects the high- and low- state levels of
a bilevel waveform. For more information on the algorithm this
option uses, see the Signal Processing Toolbox statelevels function
reference. When this check box is cleared, you may enter in values
for the high- and low- state levels manually.

- High—Used to manually specify the value that denotes a positive
polarity, or high-state level, as shown in the following figure.
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- Low—Used to manually specify the value that denotes a negative
polarity, or low-state level, as shown in the following figure.
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• State Level Tolerance — Tolerance within which the initial and
final levels of each transition must be within their respective state
levels. This value is expressed as a percentage of the difference
between the high- and low-state levels.

• Upper Ref Level — Used to compute the end of the rise-time
measurement or the start of the fall time measurement. This value
is expressed as a percentage of the difference between the high- and
low-state levels.

• Mid Ref Level— Used to determine when a transition occurs. This
value is expressed as a percentage of the difference between the high-
and low- state levels. In the following figure, the mid-reference level
is shown as the horizontal line, and its corresponding mid-reference
level instant is shown as the vertical line.
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• Lower Ref Level — Used to compute the end of the fall-time
measurement or the start of the rise-time measurement. This value
is expressed as a percentage of the difference between the high- and
low-state levels.

• Settle Seek — The duration after the mid-reference level instant
when each transition occurs used for computing a valid settling time.
This value is equivalent to the input parameter, D, which you can
set when you run the settlingtime function. The settling time is
displayed in the Overshoots/Undershoots pane.

Transitions Pane

The Transitions pane displays calculated measurements associated
with the input signal changing between its two possible state level
values, high and low.
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A positive-going transition, or rising edge, in a bilevel waveform
is a transition from the low-state level to the high-state level. A
positive-going transition has a slope value greater than zero. The
following figure shows a positive-going transition.

Whenever there is a plus sign (+) next to a text label, this symbol refers
to measurement associated with a rising edge, a transition from a
low-state level to a high-state level.

A negative-going transition, or falling edge, in a bilevel waveform
is a transition from the high-state level to the low-state level. A
negative-going transition has a slope value less than zero. The following
figure shows a negative-going transition.
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Whenever there is a minus sign (–) next to a text label, this symbol
refers to measurement associated with a falling edge, a transition from
a high-state level to a low-state level.

The Transition measurements assume that the amplitude of the input
signal is in units of volts. You must convert all input signals to volts
for the Transition measurements to be valid.

• High — The high-amplitude state level of the input signal over the
duration of the Time Span parameter. You can set Time Span in
the Main pane of the Visuals:Time Domain Options dialog box. For
more information on the algorithm this measurement uses, see the
Signal Processing Toolbox statelevels function reference.

• Low — The low-amplitude state level of the input signal over the
duration of the Time Span parameter. You can set Time Span in
the Main pane of the Visuals:Time Domain Options dialog box. For
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more information on the algorithm this measurement uses, see the
Signal Processing Toolbox statelevels function reference.

• Amplitude— Difference in amplitude between the high-state level
and the low-state level.

• + Edges— Total number of positive-polarity, or rising, edges counted
within the displayed portion of the input signal.

• + Rise Time— Average amount of time required for each rising edge
to cross from the lower-reference level to the upper-reference level.
For more information on the algorithm this measurement uses, see
the Signal Processing Toolbox risetime function reference.

• + Slew Rate — Average slope of each rising-edge transition line
within the upper- and lower-percent reference levels in the displayed
portion of the input signal. The region in which the slew rate is
calculated appears in gray in the following figure.
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For more information on the algorithm this measurement uses, see
the Signal Processing Toolbox slewrate function reference.

• – Edges— Total number of negative-polarity or falling edges counted
within the displayed portion of the input signal.

• – Fall Time— Average amount of time required for each falling edge
to cross from the upper-reference level to the lower-reference level.
For more information on the algorithm this measurement uses, see
the Signal Processing Toolbox falltime function reference.

• – Slew Rate — Average slope of each falling edge transition line
within the upper- and lower-percent reference levels in the displayed
portion of the input signal. For more information on the algorithm
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this measurement uses, see the Signal Processing Toolbox slewrate
function reference.

Overshoots/Undershoots

TheOvershoots/Undershoots pane displays calculated measurements
involving the distortion and damping of the input signal. Overshoot and
undershoot refer to the amount that a signal respectively exceeds and
falls below its final steady-state value. Preshoot refers to the amount
prior to a transition that a signal varies from its initial steady-state
value. This figure shows preshoot, overshoot, and undershoot for a
rising-edge transition.

The next figure shows preshoot, overshoot, and undershoot for a
falling-edge transition.
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• + Preshoot— Average lowest aberration in the region immediately
preceding each rising transition.

• + Overshoot — Average highest aberration in the region
immediately following each rising transition. For more information
on the algorithm this measurement uses, see the Signal Processing
Toolbox overshoot function reference.

• + Undershoot — Average lowest aberration in the region
immediately following each rising transition. For more information
on the algorithm this measurement uses, see the Signal Processing
Toolbox undershoot function reference.

• + Settling Time — Average time required for each rising edge to
enter and remain within the tolerance of the high-state level for the
remainder of the settle seek duration. The settling time is the time
after the mid-reference level instant when the signal crosses into and
remains in the tolerance region around the high-state level. This
crossing is illustrated in the following figure.
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You can modify the settle seek duration parameter in the Settings
pane. For more information on the algorithm this measurement uses,
see the Signal Processing Toolbox settlingtime function reference.

• – Preshoot— Average highest aberration in the region immediately
preceding each falling transition.

• – Overshoot — Average highest aberration in the region
immediately following each falling transition. For more information
on the algorithm this measurement uses, see the Signal Processing
Toolbox overshoot function reference.

• – Undershoot — Average lowest aberration in the region
immediately following each falling transition. For more information
on the algorithm this measurement uses, see the Signal Processing
Toolbox undershoot function reference.

• – Settling Time — Average time required for each falling edge to
enter and remain within the tolerance of the low-state level for the
remainder of the settle seek duration. The settling time is the time
after the mid-reference level instant when the signal crosses into and
remains in the tolerance region around the low-state level. You can
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modify the settle seek duration parameter in the Settings pane. For
more information on the algorithm this measurement uses, see the
Signal Processing Toolbox settlingtime function reference.

Cycles

The Cycles pane displays calculated measurements pertaining to
repetitions or trends in the displayed portion of the input signal.

• Period — Average duration between adjacent edges of identical
polarity within the displayed portion of the input signal. The Bilevel
measurements panel calculates period as follows. It takes the
difference between the mid-reference level instants of the initial
transition of each positive-polarity pulse and the next positive-going
transition. These mid-reference level instants appear as red dots in
the following figure.
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For more information on the algorithm this measurement uses, see
the Signal Processing Toolbox pulseperiod function reference.

• Frequency — Reciprocal of the average period. Whereas period is
typically measured in some metric form of seconds, or seconds per
cycle, frequency is typically measured in hertz or cycles per second.

• + Pulses— Number of positive-polarity pulses counted.

• + Width — Average duration between rising and falling edges of
each positive-polarity pulse within the displayed portion of the input
signal. For more information on the algorithm this measurement
uses, see the Signal Processing Toolbox pulsewidth function
reference.

• + Duty Cycle — Average ratio of pulse width to pulse period for
each positive-polarity pulse within the displayed portion of the input
signal. For more information on the algorithm this measurement
uses, see the Signal Processing Toolbox dutycycle function reference.

• – Pulses— Number of negative-polarity pulses counted.

• – Width — Average duration between rising and falling edges of
each negative-polarity pulse within the displayed portion of the input
signal. For more information on the algorithm this measurement
uses, see the Signal Processing Toolbox pulsewidth function
reference.

• – Duty Cycle — Average ratio of pulse width to pulse period for
each negative-polarity pulse within the displayed portion of the input
signal. For more information on the algorithm this measurement
uses, see the Signal Processing Toolbox dutycycle function reference.

When you use the zoom options in the Scope, the bilevel measurements
automatically adjust to the time range shown in the display. In the
Scope toolbar, click the Zoom In or Zoom X button to constrict the
x-axis range of the display, and the statistics shown reflect this time
range. For example, you can zoom in on one rising edge to make the
Bilevel Measurements panel display information about only that
particular rising edge. However, this feature does not apply to the High
and Low measurements.
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Peak Finder Panel

The Peak Finder panel displays maxima and the x-axis values at
which they occur, allowing the settings for peak threshold, maximum
number of peaks, and peak excursion to be modified. You can choose
to hide or display the Peak Finder panel. In the scope menu, select
Tools > Measurements > Peak Finder. Alternatively, in the scope

toolbar, select the Peak Finder button.

The Peak finder panel is separated into two panes, labeled Settings
and Peaks. You can expand each pane to see the available options.

Settings Pane

The Settings pane enables you to modify the parameters used to
calculate the peak values within the displayed portion of the input
signal. For more information on the algorithms this pane uses, see the
Signal Processing Toolbox findpeaks function reference.

• Peak Threshold— The level above which peaks are detected. This
setting is equivalent to the MINPEAKHEIGHT parameter, which you can
set when you run the findpeaks function.

• Max Num of Peaks— The maximum number of peaks to show. The
value you enter must be a scalar integer between 1 and 99. This
setting is equivalent to the NPEAKS parameter, which you can set
when you run the findpeaks function.
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• Min Peaks Distance— The minimum number of samples between
adjacent peaks. This setting is equivalent to the MINPEAKDISTANCE
parameter, which you can set when you run the findpeaks function.

• Peak Excursion— The minimum height difference between a peak
and its neighboring samples. Peak excursion is illustrated alongside
peak threshold in the following figure.

The peak threshold is a minimum value necessary for a sample
value to be a peak. The peak excursion is the minimum difference
between a peak sample and the samples to its left and right in the
time domain. In the figure, the green vertical line illustrates the
lesser of the two height differences between the labeled peak and its
neighboring samples. This height difference must be greater than
the Peak Excursion value for the labeled peak to be classified as a
peak. Compare this setting to peak threshold, which is illustrated by
the red horizontal line. The amplitude must be above this horizontal
line for the labeled peak to be classified as a peak.

The peak excursion setting is equivalent to the THRESHOLD parameter,
which you can set when you run the findpeaks function.
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• Label Format — The coordinates to display next to the calculated
peak values on the plot. To see peak values, you must first expand
the Peaks pane and select the check boxes associated with individual
peaks of interest. By default, both x-axis and y-axis values are
displayed on the plot. Select which axes values you want to display
next to each peak symbol on the display.

- X+Y — Display both x-axis and y-axis values.

- X — Display only x-axis values.

- Y — Display only y-axis values.

Peaks Pane

The Peaks pane displays all of the largest calculated peak values.
It also shows the coordinates at which the peaks occur, using the
parameters you define in the Settings pane. You set theMax Num of
Peaks parameter to specify the number of peaks shown in the list.

The numerical values displayed in the Value column are equivalent
to the pks output argument returned when you run the findpeaks
function. The numerical values displayed in the second column are
similar to the locs output argument returned when you run the
findpeaks function.

The Peak Finder displays the peak values in the Peaks pane. By
default, the Peak Finder panel displays the largest calculated peak
values in the Peaks pane in decreasing order of peak height. Use the

sort descending button ( ) to rearrange the category and order by
which Peak Finder displays peak values. Click this button again to
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sort the peaks in ascending order instead. When you do so, the arrow

changes direction to become the sort ascending button ( ). A filled
sort button indicates that the peak values are currently sorted by this

category. If the sort button is not filled ( ), then the peak values are
sorted by the other category. The Max Num of Peaks parameter still
controls the number of peaks listed.

Use the check boxes to control which peaks are shown on the display.
By default, all check boxes are cleared and the Peak Finder panel
hides all the peaks. To show all the peak values on the display, select
the check box in the top-left corner of the Peaks pane. To hide all the
peak values on the display, clear this check box. To show an individual
peak, select the check box directly to the left of its Value listing. To
hide an individual peak, clear the check box directly to the left of its
Value listing.

Visuals
— Time
Domain
Options

The Visuals:Time Domain Options dialog box controls the visual
configuration settings of the Scope displays. From the Scope menu,
select View > Properties to open this dialog box.

Main Pane

TheMain pane of the Visuals:Time Domain Options dialog box appears
as follows.
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Time units
Specify the units used to describe the time-axis. The default setting is
Metric. You can select one of the following options:

• Metric— In this mode, the Scope converts the times on the time-axis
to some metric units such as milliseconds, microseconds, days,
etc. The Scope chooses the appropriate metric units, based on the
minimum time-axis limit and the maximum time-axis limit of the
scope window.

• Seconds — In this mode, the Scope always displays the units on
the time-axis as seconds.

• None — In this mode, the Scope displays no units on the time-axis.
The Scope shows only the word Time on the time-axis.

This parameter is Tunable.
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Show time-axis labels
Specify how to display the time units used to describe the time-axis.
The default setting is All. You can select one of the following options:

• All— In this mode, the time-axis labels appear in all displays.

• None — In this mode, the time-axis labels do not appear in the
displays.

• Bottom Displays Only— In this mode, the time-axis labels appear
in only the bottom row of the displays.

Tunable.

Maximize axes
Specify whether to display the Scope in maximized axes mode. In this
mode, each of the axes are expanded to fit into the entire display. In
each display, there is no space to show labels. Tick mark values are
shown on top of the plotted data. The default setting is Auto. You can
select one of the following options:

• Auto — In this mode, the axes appear maximized in all displays
only if the Title and Y-Axis label parameters are empty for every
display. If you enter any value in any display for either of these
parameters, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any
values entered into the Title and Y-Axis label parameters are
hidden.

• Off— In this mode, none of the axes appear maximized.

Display Pane

The Display pane of the Visuals—Time Domain Options dialog box
appears as follows.
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Active display
Specify the active display as an integer to get and set relevant
properties. The number of a display corresponds to its column-wise
placement index. Set this parameter to control which display should
have its axes colors, line properties, marker properties, and visibility
changed. This property is Tunable.

When you use the Layout option to tile the window into multiple
displays, the display highlighted in blue is referred to as the active
display. The default setting is 1.

Title
Specify the active display title as a string. By default, the active display
has no title. Tunable.

Show legend
Select this check box to show the legend in the display. The channel
legend displays a name for each channel of each input signal. When the
legend appears, you can place it anywhere inside of the scope window.
To turn the legend off, clear the Show legend check box. Tunable.
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You can edit the name of any channel in the legend. To do so,
double-click the current name, and enter a new channel name. By
default, if the signal has multiple channels, the scope uses an index
number to identify each channel of that signal. To change the
appearance of any channel of any input signal in the scope window,
from the scope menu, select View > Style.

Show grid
When you select this check box, a grid appears in the display of the
scope figure. To hide the grid, clear this check box. Tunable.

Plot signals as magnitude and phase
When you select this check box, the scope splits the display into a
magnitude plot and a phase plot. By default, this check box is cleared.
If the input signal is complex valued, the scope plots the real and
imaginary portions on the same axes. These real and imaginary
portions appear as different-colored lines on the same axes, as shown in
the following figure.

Selecting this check box and clicking the Apply or OK button changes
the display. The magnitude of the input signal appears on the top
axes and its phase, in degrees, appears on the bottom axes. See the
following figure.
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This feature is particularly useful for complex-valued input signals.
If the input is a real-valued signal, selecting this check box always
produces the same behavior. The phase is 0 for nonnegative input and
180 degrees for negative input. Tunable.

Y-limits (Minimum)
Specify the minimum value of the y-axis. Tunable.

When you select the Plot signal(s) as magnitude and phase check
box, the value of this parameter always applies to the magnitude plot
on the top axes. The phase plot on the bottom axes is always limited to
a minimum value of –180 degrees.

Y-limits (Maximum)
Specify the maximum value of the y-axis. Tunable.

When you select the Plot signal(s) as magnitude and phase check
box, the value of this parameter always applies to the magnitude plot
on the top axes. The phase plot on the bottom axes is always limited to
a maximum value of 180 degrees.

Y-label
Specify as a string the text for the scope to display to the left of the
y-axis. This property is Tunable.
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This parameter becomes invisible when you select the Plot signal(s) as
magnitude and phase check box. When you enable that parameter,
the y-axis label always appears as Magnitude on the top axes and Phase
on the bottom axes.

Style
Dialog
Box

In the Style dialog box, you can customize the style of displays. You can
change the color of the figure containing the displays, the background
and foreground colors of display axes, and properties of lines in a
display. From the Signal Browser menu, select View > Style to open
this dialog box.

Properties

The Style dialog box allows you to modify the following properties of
the Signal Browser:
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Figure color
Specify the color that you want to apply to the background of the Signal
Browser. By default, the figure color is gray.

Plot type
Specify the type of plot to use. The default setting is Line. Valid values
for Plot type are:

• Line— Displays input signal as lines connecting each of the sampled
values. This approach is similar to the functionality of the MATLAB
line or plot function.

• Stairs — Displays input signal as a stairstep graph. A stairstep
graph is made up of only horizontal lines and vertical lines. Each
horizontal line represents the signal value for a discrete sample
period and is connected to two vertical lines. Each vertical line
represents a change in values occurring at a sample. This approach
is equivalent to the MATLAB stairs function. Stairstep graphs are
useful for drawing time history graphs of digitally sampled data.

This parameter is Tunable.

Select display
Specify the active display as a number, where a display number
corresponds to the index of the input signal. The number of a display
corresponds to its column-wise placement index. The default setting is 1.
Set this parameter to control which display should have its axes colors,
line properties, marker properties, and visibility changed. Tunable.

Axes colors
Specify the color that you want to apply to the background of the axes
for the active display.

Properties for line
Specify the signal for which you want to modify the visibility, line
properties, and marker properties.

Visible
Specify whether the selected signal on the active display should be
visible. If you clear this check box, the line disappears.
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Line
Specify the line style, line width, and line color for the selected signal
on the active display.

Marker
Specify marks for the selected signal on the active display to show at
data points. This parameter is similar to the Marker property for the
MATLAB Handle Graphics plot objects. You can choose any of the
marker symbols from the following table.

Specifier Marker Type

none No marker (default)

Circle

Square

Cross

Point

Plus sign

Asterisk

Diamond

Downward-pointing triangle

Upward-pointing triangle

Left-pointing triangle

Right-pointing triangle
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Specifier Marker Type

Five-pointed star (pentagram)

Six-pointed star (hexagram)

Filter
Design
and
Analysis
Tool

The Filter Design and Analysis Tool fdatool allows you to design and
edit FIR and IIR filters. To launch fdatool, press either the New
button or the Edit button under the Filters list box in SPTool.
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Note When you open FDATool from SPTool, a reduced version of
FDATool that is compatible with SPTool opens.

The Filter Design and Analysis Tool has a Pole/Zero Editor you can

access by selecting the icon in the left column of FDATool.

Filter
Visualization
Tool

The Filter Visualization Tool (fvtool) allows you to view the
characteristics of a designed or imported filter, including its magnitude
response, phase response, group delay, phase delay, pole-zero plot,
impulse response, and step response. To activate FVTool, click the
View button under the Filters list box in SPTool.
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Spectrum
Viewer

The Spectrum Viewer allows you to analyze frequency-domain data
graphically using a variety of methods of spectral density estimation,
including the Burg method, the FFT method, the multitaper method,
the MUSIC eigenvector method, Welch’s method, and the Yule-Walker
autoregressive method. To activate the Spectrum Viewer:

• Click the Create button under the Spectra list box to compute the
power spectral density for a signal selected in the Signals list box in
SPTool. You may need to click Apply to view the spectra.

• Click the View button to analyze spectra selected under the Spectra
list box in SPTool.

• Click the Update button under the Spectra list box in SPTool to
modify a selected power spectral density signal.

In addition, you can right-click in any plot display area to modify signal
properties.

See Also fdatool | findpeaks | fvtool
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Purpose Square wave

Syntax x = square(t)
x = square(t,duty)

Description x = square(t) generates a square wave with period 2π for the
elements of time vector t. square(t) is similar to sin(t), but creates a
square wave with peaks of ±1 instead of a sine wave.

x = square(t,duty) generates a square wave with specified duty
cycle, duty, which is a number between 0 and 100. The duty cycle is the
percent of the period in which the signal is positive.

See Also chirp | cos | diric | gauspuls | pulstran | rectpuls | sawtooth |
sin | tripuls
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Purpose Convert digital filter state-space parameters to second-order sections
form

Syntax [sos,g] = ss2sos(A,B,C,D)
[sos,g] = ss2sos(A,B,C,D,iu)
[sos,g] = ss2sos(A,B,C,D,'order')
[sos,g] = ss2sos(A,B,C,D,iu,'order')
[sos,g] = ss2sos(A,B,C,D,iu,'order','scale'')
sos = ss2sos(...)

Description ss2sos converts a state-space representation of a given digital filter to
an equivalent second-order section representation.

[sos,g] = ss2sos(A,B,C,D) finds a matrix sos in second-order
section form with gain g that is equivalent to the state-space system
represented by input arguments A, B, C, and D. The input system must
be single output and real. sos is an L-by-6 matrix

sos

b b b a a
b b b a a

b b b a aL L L L L

=

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1
1

1
     

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

whose rows contain the numerator and denominator coefficients bik and
aik of the second-order sections of H(z).

H z g H z g
b b z b z

a z a z
k

k k k

k kk

L

k

L
( ) ( )= =

+ +
+ +

− −

− −
==
∏∏ 0 1

1
2

2

1
1

2
2

11 1

[sos,g] = ss2sos(A,B,C,D,iu) specifies a scalar iu that determines
which input of the state-space system A, B, C, D is used in the conversion.
The default for iu is 1.

[sos,g] = ss2sos(A,B,C,D,'order') and

[sos,g] = ss2sos(A,B,C,D,iu,'order') specify the order of the rows
in sos, where 'order' is
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• 'down', to order the sections so the first row of sos contains the poles
closest to the unit circle

• 'up', to order the sections so the first row of sos contains the poles
farthest from the unit circle (default)

The zeros are always paired with the poles closest to them.

[sos,g] = ss2sos(A,B,C,D,iu,'order','scale'') specifies the
desired scaling of the gain and the numerator coefficients of all
second-order sections, where 'scale' is

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes
the probability of overflow in the realization. Using 2-norm scaling in
conjunction with down-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for
direct-form II implementations.

sos = ss2sos(...) embeds the overall system gain, g, in the first
section, H1(z), so that

H z H zk
k

L
( ) ( )=

=
∏

1

Note Embedding the gain in the first section when scaling a direct-form
II structure is not recommended and may result in erratic scaling. To
avoid embedding the gain, use ss2sos with two outputs.
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Examples Find a second-order section form of a Butterworth lowpass filter:

[A,B,C,D] = butter(5,0.2);
sos = ss2sos(A,B,C,D)
sos =

0.0013 0.0013 0 1.0000 -0.5095 0
1.0000 2.0008 1.0008 1.0000 -1.0966 0.3554
1.0000 1.9979 0.9979 1.0000 -1.3693 0.6926

Algorithms ss2sos uses a four-step algorithm to determine the second-order section
representation for an input state-space system:

1 It finds the poles and zeros of the system given by A, B, C, and D.

2 It uses the function zp2sos, which first groups the zeros and poles
into complex conjugate pairs using the cplxpair function. zp2sos
then forms the second-order sections by matching the pole and zero
pairs according to the following rules:

a Match the poles closest to the unit circle with the zeros closest
to those poles.

b Match the poles next closest to the unit circle with the zeros closest
to those poles.

c Continue until all of the poles and zeros are matched.

ss2sos groups real poles into sections with the real poles closest to
them in absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to
the unit circle. ss2sos normally orders the sections with poles closest
to the unit circle last in the cascade. You can tell ss2sos to order the
sections in the reverse order by specifying the 'down' flag.

4 ss2sos scales the sections by the norm specified in the 'scale'
argument. For arbitrary H(ω), the scaling is defined by
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where p can be either ∞ or 2. See the references for details. This
scaling is an attempt to minimize overflow or peak round-off noise in
fixed point filter implementations.

Diagnostics If there is more than one input to the system, ss2sos gives the following
error message:

State-space system must have only one input.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer
Academic Publishers, Boston, 1996. Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, New York, 1998. Chapter 9.

[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook
for Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John
Wiley & Sons, New York, 1993, Chapter 7.

See Also cplxpair | sos2ss | ss2tf | ss2zp | tf2sos | zp2sos
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Purpose Convert state-space filter parameters to transfer function form

Syntax [b,a] = ss2tf(A,B,C,D,iu)

Description ss2tf converts a state-space representation of a given system to an
equivalent transfer function representation.

[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

H s
B s
A s

C sI A B D( )
( )
( )

( )= = − +−1

of the system

x Ax Bu
y Cx Du
= +
= +

from the iu-th input. Vector a contains the coefficients of the
denominator in descending powers of s. The numerator coefficients are
returned in array b with as many rows as there are outputs y. ss2tf
also works with systems in discrete time, in which case it returns the
z-transform representation.

The ss2tf function is part of the standard MATLAB language.

Algorithms The ss2tf function uses poly to find the characteristic polynomial
det(sI−A) and the equality:

H s C sI A B
sI A BC sI A

sI A
( ) ( )

det( ) det( )
det( )

= − = − + − −
−

−1

See Also latc2tf | sos2tf | ss2sos | ss2zp | tf2ss | zp2tf
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Purpose Convert state-space filter parameters to zero-pole-gain form

Syntax [z,p,k] = ss2zp(A,B,C,D,i)

Description ss2zp converts a state-space representation of a given system to an
equivalent zero-pole-gain representation. The zeros, poles, and gains of
state-space systems represent the transfer function in factored form.

[z,p,k] = ss2zp(A,B,C,D,i) calculates the transfer function in
factored form

H s
Z s
P s

k
s z s z s z
s p s p s p

n

n
( )

( )
( )

( )( ) ( )
( )( ) ( )

− −
− − −
− − −

1 2

1 2





of the continuous-time system

x Ax Bu
y Cx Du
= +
= +

from the ith input (using the ith columns of B and D). The column
vector p contains the pole locations of the denominator coefficients of
the transfer function. The matrix z contains the numerator zeros in its
columns, with as many columns as there are outputs y (rows in C). The
column vector k contains the gains for each numerator transfer function.

ss2zp also works for discrete time systems. The input state-space
system must be real.

The ss2zp function is part of the standard MATLAB language.

Examples Here are two ways of finding the zeros, poles, and gains of a
discrete-time transfer function:

H z
z

z z
( )

.
= +
+ +

−

− −
2 3

1 0 4

1

1 2

b = [2 3 0];
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a = [1 0.4 1];
[z,p,k] = tf2zp(b,a)
z =

0.0000
-1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i

k =
2

[A,B,C,D] = tf2ss(b,a);
[z,p,k] = ss2zp(A,B,C,D,1)
z =

0.0000
-1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i

k =
2

Algorithms ss2zp finds the poles from the eigenvalues of the A array. The zeros are
the finite solutions to a generalized eigenvalue problem:

z = eig([A B;C D], diag([ones(1,n) 0]);

In many situations this algorithm produces spurious large, but finite,
zeros. ss2zp interprets these large zeros as infinite.

ss2zp finds the gains by solving for the first nonzero Markov
parameters.

References [1] Laub, A.J., and B.C. Moore, “Calculation of Transmission Zeros
Using QZ Techniques,” Automatica 14 (1978), p. 557.

See Also sos2zp | ss2sos | ss2tf | tf2zp | tf2zpk | zp2ss
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Purpose State-level estimation for bilevel waveform with histogram method

Syntax LEVELS = statelevels(X)
LEVELS = statelevels(X,NBINS)
LEVELS = statelevels(X,NBINS,METHOD)
[LEVELS,HISTOGRAM] = statelevels(...)
[LEVELS,HISTOGRAM,BINLEVELS] = statelevels(...)
statelevels(...)

Description LEVELS = statelevels(X) estimates the low- and high-state levels in
the bilevel waveform, X, using the histogram method. See “Algorithms”
on page 1-1199.

LEVELS = statelevels(X,NBINS) specifies the number of bins to use in
the histogram as a positive scalar. If unspecified, NBINS defaults to 100.

LEVELS = statelevels(X,NBINS,METHOD) estimates state levels using
the mean or mode of the subhistograms. Valid entries for METHOD
are 'mean' or 'mode'. METHOD defaults to 'mode'. See “Algorithms”
on page 1-1199.

[LEVELS,HISTOGRAM] = statelevels(...) returns the histogram,
HISTOGRAM, of the values in X.

[LEVELS,HISTOGRAM,BINLEVELS] = statelevels(...) returns the
centers of the histogram bins.

statelevels(...) displays a plot of the signal and the corresponding
computed histogram.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

NBINS

Number of histogram bins

Default: 100
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METHOD

State-level estimation method in the subhistograms. METHOD is a
string indicating the statistic to use for the estimation of the low- and
high-state levels. Valid entries for METHOD are 'mode' or 'mean'. See
“Algorithms” on page 1-1199.

Default: 'mode'

Output
Arguments

LEVELS

Levels of low and high states. LEVELS is a 1-by-2 row vector of state
levels estimated by the histogram method. The first element of LEVELS
is the low-state level. The second element of LEVELS is the high-state
level.

HISTOGRAM

Histogram counts (frequencies). HISTOGRAM is a column vector
with NBINS elements containing the number of data values in each
histogram bin.

BINLEVELS

Histogram bin centers. BINLEVELS is a column vector containing the
bin centers for the histogram counts in HISTOGRAM.

Definitions State

A particular level, which can be associated with an upper- and
lower-state boundary. States are ordered from the most negative to the
most positive. In a bilevel waveform, the most negative state is the low
state. The most positive state is the high state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
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number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Display State Levels and Subhistograms

Estimate the low- and high-state levels of 2.3 V underdamped clock
data. Plot the data with the estimated state levels and subhistograms.
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load('clockex.mat', 'x');
statelevels(x);

State Levels with 100 Bins and Modes of Subhistograms

Estimate the low and high-state levels of 2.3 V underdamped clock data
sampled at 4 MHz.

Use the default number of bins and modes of the subhistograms to
estimate the state levels. Plot the clock data with the lines indicating
the estimated low and high-state levels.

load('clockex.mat', 'x', 't');
LEVELS = statelevels(x);
plot(t,x);
hold on;
plot(t,LEVELS(1).*ones(length(x)),'r--');
plot(t,LEVELS(2).*ones(length(x)),'r--');

State Levels Using Means of Subhistograms

Estimate the low and high-state levels of 2.3 V underdamped clock data
sampled at 4 MHz.

Use the default number of bins and means of the subhistograms to
estimate the state levels. Plot the clock data with the lines indicating
the estimated low and high-state levels.

load('clockex.mat', 'x', 't');
LEVELS = statelevels(x,1e3,'mean');

Histogram Counts and Histogram Bin Centers

Estimate the low- and high-state levels of 2.3 V underdamped clock
data sampled at 4 MHz. Return the histogram counts and histogram
bin centers used in the histogram method.

load('clockex.mat', 'x', 't');
[LEVELS,HISTOGRAM,BINLEVELS] = statelevels(x);
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Algorithms statelevels uses the histogram method to estimate the states of
a bilevel waveform. The histogram method is described in [1]. To
summarize the method:

1 Determine the maximum and minimum amplitudes and amplitude
range of the data.

2 For the specified number of histogram bins, determine the bin width
as the ratio of the amplitude range to the number of bins.

3 Sort the data values into the histogram bins.

4 Identify the lowest-indexed histogram bin, ilow, and highest-indexed
histogram bin, ihigh, with nonzero counts.

5 Divide the histogram into two subhistograms.

The indices of the lower histogram bins are ilow ≤ i ≤ 1/2(ihigh— ilow).

The indices of the upper histogram bins are ilow + 1/2(ihigh – ilow) ≤
i ≤ ihigh.

6 Compute the state levels by determining the mode or mean of the
lower and upper histograms.

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003, pp. 15–17.

See Also midcross | overshoot | risetime | undershoot
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Purpose Step response of digital filter

Syntax [h,t] = stepz(b,a)
[h,t] = stepz(sos)
[h,t] = stepz(Hd)
[h,t] = stepz(...,n)
[h,t] = stepz(...,n,fs)
stepz(...)

Description [h,t] = stepz(b,a) returns the step response of the filter with
numerator coefficients b and denominator coefficients a. stepz chooses
the number of samples and returns the response in the column vector
h and sample times in the column vector t (where t = [0:n-1]', and
n = length(t) is computed automatically).

Note If the input to stepz is single precision, the step response is
calculated using single-precision arithmetic. The output, h, is single
precision.

[h,t] = stepz(sos) returns the step response for the second order
sections matrix, sos. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections
is less than 2, stepz considers the input to be the numerator vector,
b. Each row of sos corresponds to the coefficients of a second order
(biquad) filter. The i-th row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

[h,t] = stepz(Hd) returns the step response for the dfilt filter
object, Hd, or the array of dfilt filter objects. If Hd is an array of dfilt
objects, each column of h is the step response of the corresponding
dfilt object.

[h,t] = stepz(...,n) computes the first n samples of the step
response when n is an integer (t = [0:n-1]'). I
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[h,t] = stepz(...,n,fs) computes n samples and produces a vector
t of length n so that the samples are spaced 1/fs units apart. fs is
assumed to be in Hz.

stepz(...) with no output arguments plots the step response of the
filter. If you input the filter coefficients or second order sections matrix,
the current figure window is used. If you input a dfilt object or array
of filter objects, fvtool is used to plot the step response.

Note If you have the DSP System Toolbox product installed and are
using a dfilt object with fixed-point properties, the filter internals are
not used when calculating the step response.

Examples Example 1

Plot the step response of a Butterworth filter:

[b,a] = butter(3,.4);
stepz(b,a)
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The same example using a dfilt object and displaying the result in the
Filter Visualization Tool (fvtool) is

[b,a] = butter(3,.4);
Hd=dfilt.df1(b,a);
stepz(Hd)
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Example 2

Plot the first 50 samples of the step response of a fourth-order lowpass
elliptic filter with cutoff frequency of 0.4 times the Nyquist frequency:

[b,a] = ellip(4,0.5,20,0.4);
stepz(b,a,50)
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The same example using a dfilt object and displaying the result in the
Filter Visualization Tool (fvtool) is

[b,a] = ellip(4,0.5,20,0.4);
Hd=dfilt.df1(b,a);
stepz(Hd,50)

Algorithms stepz filters a length n step sequence using

filter(b,a,ones(1,n))

and plots the results using stem.
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To compute n in the auto-length case, stepz either uses n = length(b)
for the FIR case or first finds the poles using p = roots(a), if
length(a) is greater than 1.

If the filter is unstable, n is chosen to be the point at which the term
from the largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to
the largest amplitude pole is 5*10^-5 of its original amplitude.

If the filter is oscillatory (poles on the unit circle only), stepz computes
five periods of the slowest oscillation.

If the filter has both oscillatory and damped terms, n is chosen to equal
five periods of the slowest oscillation or the point at which the term
due to the largest (nonunity) amplitude pole is 5*10^-5 of its original
amplitude, whichever is greater.

stepz also allows for delays in the numerator polynomial. The number
of delays is incorporated into the computation for the number of
samples.

See Also freqz | grpdelay | impz | phasez | zplane
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Purpose Compute linear model using Steiglitz-McBride iteration

Syntax [b,a] = stmcb(h,nb,na)
[b,a] = stmcb(y,x,nb,na)
[b,a] = stmcb(h,nb,na,niter)
[b,a] = stmcb(y,x,nb,na,niter)
[b,a] = stmcb(h,nb,na,niter,ai)
[b,a] = stmcb(y,x,nb,na,niter,ai)

Description Steiglitz-McBride iteration is an algorithm for finding an IIR filter with
a prescribed time domain impulse response. It has applications in both
filter design and system identification (parametric modeling).

[b,a] = stmcb(h,nb,na) finds the coefficients b and a of the system
b(z)/a(z) with approximate impulse response h, exactly nb zeros, and
exactly na poles.

[b,a] = stmcb(y,x,nb,na) finds the system coefficients b and a of
the system that, given x as input, has y as output. x and y must be
the same length.

[b,a] = stmcb(h,nb,na,niter) and

[b,a] = stmcb(y,x,nb,na,niter) use niter iterations. The default
for niter is 5.

[b,a] = stmcb(h,nb,na,niter,ai) and

[b,a] = stmcb(y,x,nb,na,niter,ai) use the vector ai as the initial
estimate of the denominator coefficients. If ai is not specified, stmcb
uses the output argument from [b,ai] = prony(h,0,na) as the vector
ai.

stmcb returns the IIR filter coefficients in length nb+1 and na+1 row
vectors b and a. The filter coefficients are ordered in descending powers
of z.

H z
B z
A z

b b z b nb z

a a z a n

nb
( )

( )
( )

( ) ( ) ( )

( ) ( ) (
= = + + + +

+ + +

− −

−
1 2 1

1 2

1

1


 aa z na+ −1)
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Examples Approximate the impulse response of a Butterworth filter with a system
of lower order:

[b,a] = butter(6,0.2);
h = filter(b,a,[1 zeros(1,100)]);
freqz(b,a,128)

[bb,aa] = stmcb(h,4,4);
freqz(bb,aa,128)
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Algorithms stmcb attempts to minimize the squared error between the impulse
response h of b(z)/a(z) and the input signal x.

min | ( ) ( )|
,a b i

x i h i−
=

∞

∑ 2

0

stmcb iterates using two steps:

1 It prefilters h and x using 1/a(z).

2 It solves a system of linear equations for b and a using \.

stmcb repeats this process niter times. No checking is done to see if
the b and a coefficients have converged in fewer than niter iterations.

Diagnostics If x and y have different lengths, stmcb produces this error message,

Input signal X and output signal Y must
have the same length.
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References [1] Steiglitz, K., and L.E. McBride, “A Technique for the Identification
of Linear Systems,” IEEE Trans. Automatic Control, Vol. AC-10 (1965),
pp. 461-464.

[2] Ljung, L., System Identification: Theory for the User, Prentice-Hall,
Englewood Cliffs, NJ, 1987, p. 297.

See Also levinson | lpc | aryule | prony
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Purpose Strip plot

Syntax strips(x)
strips(x,n)
strips(x,sd,fs)
strips(x,sd,fs,scale)

Description strips(x) plots vector x in horizontal strips of length 250. If x is
a matrix, strips(x) plots each column of x. The left-most column
(column 1) is the top horizontal strip.

strips(x,n) plots vector x in strips that are each n samples long.

strips(x,sd,fs) plots vector x in strips of duration sd seconds, given
a sampling frequency of fs samples per second.

strips(x,sd,fs,scale) scales the vertical axes.

If x is a matrix, strips(x,n), strips(x,sd,fs), and
strips(x,sd,fs,scale) plot the different columns of x on the same
strip plot.

strips ignores the imaginary part of complex-valued x.

Examples Plot two seconds of a frequency modulated sinusoid in 0.25 second strips:

fs = 1000; % Sampling frequency
t = 0:1/fs:2; % Time vector
x = vco(sin(2*pi*t),[10 490],fs); % FM waveform
strips(x,0.25,fs)
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See Also plot | stem
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Purpose Taylor window

Syntax w = taylorwin(n)
w = taylorwin(n,nbar)
w = taylorwin(n,nbar,sll)

Description Taylor windows are similar to Chebyshev windows. While a Chebyshev
window has the narrowest possible mainlobe for a specified sidelobe
level, a Taylor window allows you to make tradeoffs between the
mainlobe width and sidelobe level. The Taylor distribution avoids edge
discontinuities, so Taylor window sidelobes decrease monotonically.
Taylor window coefficients are not normalized. Taylor windows are
typically used in radar applications, such as weighting synthetic
aperature radar images and antenna design.

w = taylorwin(n) returns an n-point Taylor window in a column vector
w. The values in this vector are the window weights or coefficients.
n must be a positive integer. The default value for the number of
approximately equal height sidelobes (nbar) is 4 and for the maximum
sidelobe level (sll) is -30.

w = taylorwin(n,nbar) returns an n-point Taylor window with
nbar nearly constant-level sidelobes adjacent to the mainlobe. These
sidelobes are “nearly constant-level” because some decay occurs in the
transition region. nbar must be a positive integer.

w = taylorwin(n,nbar,sll) returns an n-point Taylor window with
a maximum sidelobe level of sll dB relative to the mainlobe peak.sll
must be a negative value, such as -30, which produces sidelobes with
peaks 30 dB down from the mainlobe peak.

Examples Generate a 64-point Taylor window with four nearly constant-level
sidelobes and a peak sidelobe level of -35 dB relative to the mainlobe
peak.

w = taylorwin(64,4,-35);
wvtool(w);
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References [1] Carrara, W.G., R.M. Majewski and R.S. Goodman, Spotlight
Synthetic Aperature Radar: Signal Processing Algorithms, Artech
House Publishers, Boston, 1995, Appendix D.2.

[2] Brookner, Eli, Practical Phased Array Antenna Systems, Lex Book,
Lexington, MA, 1991.
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Purpose Convert transfer function filter parameters to lattice filter form

Syntax [k,v] = tf2latc(b,a)
k = tf2latc(1,a)
[k,v] = tf2latc(1,a)
k = tf2latc(b)
k = tf2latc(b, 'phase')

Description [k,v] = tf2latc(b,a) finds the lattice parameters k and the ladder
parameters v for an IIR (ARMA) lattice-ladder filter, normalized
by a(1). Note that an error is generated if one or more of the lattice
parameters are exactly equal to 1.

k = tf2latc(1,a) finds the lattice parameters k for an IIR all-pole
(AR) lattice filter.

[k,v] = tf2latc(1,a) returns the scalar ladder coefficient at the
correct position in vector v. All other elements of v are zero.

k = tf2latc(b) finds the lattice parameters k for an FIR (MA) lattice
filter, normalized by b(1).

k = tf2latc(b, 'phase') specifies the type of FIR (MA) lattice filter,
where 'phase' is

• 'max', for a maximum phase filter.

• 'min', for a minimum phase filter.

See Also latc2tf | latcfilt | tf2sos | tf2ss | tf2zp | tf2zpk
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Purpose Convert digital filter transfer function data to second-order sections
form

Syntax [sos,g] = tf2sos(b,a)
[sos,g] = tf2sos(b,a,'order')
[sos,g] = tf2sos(b,a,'order','scale')
sos = tf2sos(...)

Description tf2sos converts a transfer function representation of a given digital
filter to an equivalent second-order section representation.

[sos,g] = tf2sos(b,a) finds a matrix sos in second-order section
form with gain g that is equivalent to the digital filter represented by
transfer function coefficient vectors a and b.
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sos is an L-by-6 matrix

sos

b b b a a
b b b a a
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whose rows contain the numerator and denominator coefficients bik and
aik of the second-order sections of H(z).
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[sos,g] = tf2sos(b,a,'order') specifies the order of the rows in
sos, where 'order' is

• 'down', to order the sections so the first row of sos contains the poles
closest to the unit circle
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• 'up', to order the sections so the first row of sos contains the poles
farthest from the unit circle (default)

[sos,g] = tf2sos(b,a,'order','scale') specifies the desired
scaling of the gain and numerator coefficients of all second-order
sections, where 'scale' is:

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes
the probability of overflow in the realization. Using 2-norm scaling in
conjunction with down-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for
direct-form II implementations.

sos = tf2sos(...) embeds the overall system gain, g, in the first
section, H1(z), so that

H z H zk
k

L
( ) ( )=

=
∏

1

Note Embedding the gain in the first section when scaling a direct-form
II structure is not recommended and may result in erratic scaling. To
avoid embedding the gain, use ss2sos with two outputs.

Algorithms tf2sos uses a four-step algorithm to determine the second-order section
representation for an input transfer function system:

1 It finds the poles and zeros of the system given by b and a.
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2 It uses the function zp2sos, which first groups the zeros and poles
into complex conjugate pairs using the cplxpair function. zp2sos
then forms the second-order sections by matching the pole and zero
pairs according to the following rules:

a Match the poles closest to the unit circle with the zeros closest
to those poles.

b Match the poles next closest to the unit circle with the zeros closest
to those poles.

c Continue until all of the poles and zeros are matched.

tf2sos groups real poles into sections with the real poles closest to
them in absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to
the unit circle. tf2sos normally orders the sections with poles closest
to the unit circle last in the cascade. You can tell tf2sos to order the
sections in the reverse order by specifying the 'down' flag.

4 tf2sos scales the sections by the norm specified in the 'scale'
argument. For arbitrary H(ω), the scaling is defined by

H H dp
p

p
=
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⎤

⎦
⎥
⎥∫1

2
0

2
1


 



| ( )|

where p can be either ∞ or 2. See the references for details on the
scaling. This scaling is an attempt to minimize overflow or peak
round-off noise in fixed point filter implementations.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer
Academic Publishers, Boston, 1996, Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, New York, 1998, Chapter 9.
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[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook
for Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John
Wiley & Sons, New York, 1993, Chapter 7.

See Also cplxpair | sos2tf | ss2sos | tf2ss | tf2zp | tf2zpk | zp2sos
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Purpose Convert transfer function filter parameters to state-space form

Syntax [A,B,C,D] = tf2ss(b,a)

Description tf2ss converts the parameters of a transfer function representation of
a given system to those of an equivalent state-space representation.

[A,B,C,D] = tf2ss(b,a) returns the A, B, C, and D matrices of a state
space representation for the single-input transfer function
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BB D+

in controller canonical form

x Ax Bu
y Cx Du
= +
= +

The input vector a contains the denominator coefficients in descending
powers of s. The rows of the matrix b contain the vectors of numerator
coefficients (each row corresponds to an output). In the discrete-time
case, you must supply b and a to correspond to the numerator and
denominator polynomials with coefficients in descending powers of z.

For discrete-time systems you must make b have the same number of
columns as the length of a. You can do this by padding each numerator
represented in b (and possibly the denominator represented in the
vector a) with trailing zeros. You can use the function eqtflength to
accomplish this if b and a are vectors of unequal lengths.

The tf2ss function is part of the standard MATLAB language.
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Examples Consider the system:

H s

s

s s

s s
( )

.
=

+

+ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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+ +

2 3

2 1

0 4 1

2

2

To convert this system to state-space, type

b = [0 2 3; 1 2 1];
a = [1 0.4 1];
[A,B,C,D] = tf2ss(b,a)
A =

-0.4000 -1.0000
1.0000 0

B =
1
0

C =
2.0000 3.0000
1.6000 0

D =
0
1

Note There is disagreement in the literature on naming conventions
for the canonical forms. It is easy, however, to generate similarity
transformations that convert these results to other forms.

See Also sos2ss | ss2tf | tf2sos | tf2zp | tf2zpk | zp2ss
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Purpose Convert transfer function filter parameters to zero-pole-gain form

Syntax [z,p,k] = tf2zp(b,a)

Description tf2zp finds the zeros, poles, and gains of a continuous-time transfer
function.

Note You should use tf2zp when working with positive powers
(s2 + s + 1), such as in continuous-time transfer functions. A similar
function, tf2zpk, is more useful when working with transfer functions
expressed in inverse powers (1 + z-1 + z-2), which is how transfer
functions are usually expressed in DSP.

[z,p,k] = tf2zp(b,a) finds the matrix of zeros z, the vector of poles
p, and the associated vector of gains k from the transfer function
parameters b and a:

• The numerator polynomials are represented as columns of the matrix
b.

• The denominator polynomial is represented in the vector a.

Given a SIMO continuous-time system in polynomial transfer function
form
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you can use the output of tf2zp to produce the single-input, multioutput
(SIMO) factored transfer function form
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The following describes the input and output arguments for tf2zp:
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• The vector a specifies the coefficients of the denominator polynomial
A(s) (or A(z)) in descending powers of s (z-1).

• The ith row of the matrix b represents the coefficients of the ith
numerator polynomial (the ith row of B(s) or B(z)). Specify as many
rows of b as there are outputs.

• For continuous-time systems, choose the number nb of columns of b
to be less than or equal to the length na of the vector a.

• For discrete-time systems, choose the number nb of columns of b to
be equal to the length na of the vector a. You can use the function
eqtflength to provide equal length vectors in the case that b and a
are vectors of unequal lengths. Otherwise, pad the numerators in the
matrix b (and, possibly, the denominator vector a) with zeros.

• The zero locations are returned in the columns of the matrix z, with
as many columns as there are rows in b.

• The pole locations are returned in the column vector p and the gains
for each numerator transfer function in the vector k.

The tf2zp function is part of the standard MATLAB language.

Examples Find the zeros, poles, and gains of this continuous-time system:

H s
s s

s s
( )

.
= +

+ +
2 3

0 4 1

2

2

b = [2 3];
a = [1 0.4 1];
[b,a] = eqtflength(b,a); % Make lengths equal
[z,p,k] = tf2zp(b,a) % Obtain zero-pole-gain form
z =

0
-1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i
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k =
2

See Also sos2zp | ss2zp | tf2sos | tf2ss | tf2zpk | zp2tf
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Purpose Convert transfer function filter parameters to zero-pole-gain form

Syntax [z,p,k] = tf2zpk(b,a)

Description tf2zpk finds the zeros, poles, and gains of a discrete-time transfer
function.

Note You should use tf2zpk when working with transfer functions
expressed in inverse powers (1 + z-1 + z-2), which is how transfer
functions are usually expressed in DSP. A similar function, tf2zp, is
more useful for working with positive powers (s2 + s + 1), such as in
continuous-time transfer functions.

[z,p,k] = tf2zpk(b,a) finds the matrix of zeros z, the vector of
poles p, and the associated vector of gains k from the transfer function
parameters b and a:

• The numerator polynomials are represented as columns of the matrix
b.

• The denominator polynomial is represented in the vector a.

Given a single-input, multiple output (SIMO) discrete-time system in
polynomial transfer function form
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you can use the output of tf2zpk to produce the single-input,
multioutput (SIMO) factored transfer function form
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The following describes the input and output arguments for tf2zpk:
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• The vector a specifies the coefficients of the denominator polynomial
A(z) in descending powers of z.

• The ith row of the matrix b represents the coefficients of the ith
numerator polynomial (the ith row of B(s) or B(z)). Specify as many
rows of b as there are outputs.

• The zero locations are returned in the columns of the matrix z, with
as many columns as there are rows in b.

• The pole locations are returned in the column vector p and the gains
for each numerator transfer function in the vector k.

Examples Find the poles, zeros, and gain of a Butterworth filter:

[b,a] = butter(3,.4);
[z,p,k] = tf2zpk(b,a)
z =

-1.0000
-1.0000 + 0.0000i
-1.0000 - 0.0000i

p =
0.2094 + 0.5582i
0.2094 - 0.5582i
0.1584

k =
0.0985

See Also sos2zp | ss2zp | tf2sos | tf2ss | tf2zp | zp2tf
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Purpose Transfer function estimate

Syntax Txy = tfestimate(x,y)
Txy = tfestimate(x,y,window)
Txy = tfestimate(x,y,window,noverlap)
[Txy,W] = tfestimate(x,y,window,noverlap,nfft)
[Txy,F] = tfestimate(x,y,window,noverlap,nfft,fs)
[...] = tfestimate(x,y,...,'twosided')
tfestimate(...)

Description Txy = tfestimate(x,y) finds a transfer function estimate Txy given
input signal vector x and output signal vector y. Vectors x and y must
be the same length. The relationship between the input x and output
y is modeled by the linear, time-invariant transfer function Txy. The
transfer function is the quotient of the cross power spectral density
(Pyx) of x and y and the power spectral density (Pxx) of x.

T f
P f

P fxy
yx

xx
( ) = ( )

( )

If x is real, tfestimate estimates the transfer function at positive
frequencies only; in this case, the output Txy is a column vector of
length nfft/2+1 for nfft even and (nfft+1)/2 for nfft odd. If x or y is
complex, tfestimate estimates the transfer function for both positive
and negative frequencies and Txy has length nfft.

tfestimate uses the following default values:
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Default Values

Parameter Description Default Value

nfft FFT length which
determines the
frequencies at which
the PSD is estimated

For real x and y,
the length of Txy is
(nfft/2+1) if nfft is even
or (nfft+1)/2 if nfft is
odd. For complex x or y,
the length of Txy is nfft.

Maximum of 256 or the
next power of 2 greater
than the length of each
section of x or y

fs Sampling frequency 1

window Windowing function and
number of samples to use
to section x and y

Periodic Hamming
window with length
equal to the signal
segment length that
results from dividing
the signal x into eight
sections and then
applying the default
or specified overlap.

noverlap Number of samples
by which the sections
overlap

Value to obtain 50%
overlap

Note You can use the empty matrix [] to specify the default
value for any input argument except x or y. For example,
Txy = tfestimate(x,y,[],[],128) uses a Hamming window with
default length, as described above, default noverlap to obtain 50%
overlap, and the specified 128 nfft.
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Txy = tfestimate(x,y,window) specifies a windowing function,
divides x and y into overlapping sections of the specified window length,
and windows each section using the specified window function. If
you supply a scalar for window, Txy uses a Hamming window of that
length. The length of the window must be less than or equal to nfft.
If the length of the window exceeds nfft, tfestimate zero pads the
sections. To replicate the output of the obsoleted tfe function, specify
'hanning(nfft)' as the window.

Txy = tfestimate(x,y,window,noverlap) overlaps the sections of x
by noverlap samples. noverlap must be an integer smaller than the
length of window.

[Txy,W] = tfestimate(x,y,window,noverlap,nfft) uses the
specified FFT length nfft in estimating the PSD and CPSD estimates
for the transfer function. It also returns W, which is the vector of
normalized frequencies (inrad/sample) at which the tfestimate is
estimated. For real signals, the range of W is [0, π] when nfft is even
and [0, π) when nfft is odd. For complex signals, the range of W is
[0, 2π).

[Txy,F] = tfestimate(x,y,window,noverlap,nfft,fs) returns
Txy as a function of frequency and a vector F of frequencies at which
tfestimate estimates the transfer function. fs is the sampling
frequency in Hz. F is the same size as Txy, so plot(f,Txy) plots the
transfer function estimate versus properly scaled frequency. For real
signals, the range of F is [0, fs/2] when nfft is even and [0, fs/2) when
nfft is odd. For complex signals, the range of F is [0, fs).

[...] = tfestimate(x,y,...,'twosided') returns a transfer
function estimate with frequencies that range over the entire interval
from 0 to the sampling frequency, [0,Fs). Specifying 'onesided' uses
from 0 to the Nyquist frequency.

tfestimate(...) with no output arguments plots the transfer function
estimate in the current figure window.

Examples Compute and plot the transfer function estimate between two colored
noise sequences x and y:
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h = fir1(30,0.2,rectwin(31));
x = randn(16384,1);
y = filter(h,1,x);
tfestimate(x,y,1024,[],[],512)

Algorithms tfestimate uses Welch’s averaged periodogram method. See pwelch
for details.

See Also cpsd | mscohere | periodogram | pwelch | spectrum
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Purpose Triangular window

Syntax triang(L)

Description triang(L) returns an L-point triangular window in the column vector
w. The coefficients of a triangular window are:

For L odd:
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For L even:
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The triangular window is very similar to a Bartlett window. The
Bartlett window always ends with zeros at samples 1 and L, while the
triangular window is nonzero at those points. For L odd, the center L-2
points of triang(L-2) are equivalent to bartlett(L).

Examples Create a 200-point triangular window and plot the result using WVTool.

L = 200;
wvtool(triang(L))
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 447-448.

See Also barthannwin | bartlett | blackmanharris | bohmanwin | nuttallwin
| parzenwin | rectwin | window | wintool | wvtool
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Purpose Sampled aperiodic triangle

Syntax y = tripuls(T)
y = tripuls(T,w)
y = tripuls(T,w,s)

Description y = tripuls(T) returns a continuous, aperiodic, symmetric,
unity-height triangular pulse at the times indicated in array T, centered
about T=0 and with a default width of 1.

y = tripuls(T,w) generates a triangular pulse of width w.

y = tripuls(T,w,s) generates a triangular pulse with skew s, where
-1 < s < 1. When s is 0, a symmetric triangular pulse is generated.

Examples Create a triangular pulse with width 0.4.

fs = 10000;
t = -1:1/fs:1;
w = .4;
x = tripuls(t,w);
figure,plot(t,x)
xlabel('Time (sec)');ylabel('Amplitude');
title('Triangular Aperiodic Pulse')
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See Also chirp | cos | diric | gauspuls | pulstran | rectpuls | sawtooth |
sin | square | tripuls
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Purpose Tukey (tapered cosine) window

Syntax w = tukeywin(L,r)

Description w = tukeywin(L,r) returns an L-point Tukey window in the column
vector w. A Tukey window is a rectangular window with the first
and last r/2 percent of the samples equal to parts of a cosine. See
“Definitions” on page 1-1235 for the equation of the Tukey window. r is
a real number between 0 and 1. If you input r ≤0, you obtain a rectwin
window. If you input r ≥1, you obtain a hann window. r defaults to 0.5.

Examples Compute 128-point Tukey windows with five different values for r and
display the results using WVTool.

L=128;
t0=tukeywin(L,0); % Equivalent to rectangular window
t25=tukeywin(L,0.25);
t5=tukeywin(L); % r=0.5
t75=tukeywin(L,0.75);
t1=tukeywin(L,1); % Equivalent to Hann window
wvtool(t0,t25,t5,t75,t1)
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Definitions The following equation defines the L–point Tukey window:
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where x is a L–point linearly spaced vector generated using linspace.
The parameter r is the ratio of cosine-tapered section length to the
entire window length with 0 ≤r≤1. For example, setting r =0.5 produces
a Tukey window where 1/2 of the entire window length consists of
segments of a phase-shifted cosine with period 2r =1. If you specify
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r≤0, an L-point rectangular window is returned. If you specify r≥1, an
L-point von Hann window (hann) is returned.

References [1] Bloomfield P. Fourier Analysis of Time Series: An Introduction, New
York: Wiley-Interscience, 2000, p.69.

See Also chebwin | gausswin | kaiser | window | wintool | wvtool
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Purpose Decode 2n-level quantized integer inputs to floating-point outputs

Syntax y = udecode(u,n)
y = udecode(u,n,v)
y = udecode(u,n,v,'SaturateMode')

Description y = udecode(u,n) inverts the operation of uencode and reconstructs
quantized floating-point values from an encoded multidimensional
array of integers u. The input argument n must be an integer between 2
and 32. The integer n specifies that there are 2n quantization levels for
the inputs, so that entries in u must be either:

• Signed integers in the range [-2n/2, (2n/2) - 1]

• Unsigned integers in the range [0, 2n-1]

Inputs can be real or complex values of any integer data type (uint8,
uint16, uint32, int8, int16, int32). Overflows (entries in u outside of
the ranges specified above) are saturated to the endpoints of the range
interval. The output y has the same dimensions as u. Its entries have
values in the range [-1,1].

y = udecode(u,n,v) decodes u such that the output y has values in the
range [-v,v], where the default value for v is 1.

y = udecode(u,n,v,'SaturateMode') decodes u and treats input
overflows (entries in u outside of [-v,v]) according to the string
'saturatemode', which can be one of the following:

• 'saturate': Saturate overflows. This is the default method for
treating overflows.

- Entries in signed inputs u whose values are outside of the range
[-2n/2, (2n/2) - 1] are assigned the value determined by the closest
endpoint of this interval.

- Entries in unsigned inputs u whose values are outside of the range
[0, 2n-1] are assigned the value determined by the closest endpoint
of this interval.

• 'wrap': Wrap all overflows according to the following:
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- Entries in signed inputs u whose values are outside of the range
[-2n/2, (2n/2) - 1] are wrapped back into that range using modulo 2n

arithmetic (calculated using u = mod(u+2^n/2,2^n)-(2^n/2)).

- Entries in unsigned inputs u whose values are outside of the range
[0, 2n-1] are wrapped back into the required range before decoding
using modulo 2n arithmetic (calculated using u = mod(u,2^n)).

Examples % Create signed 8-bit integer string
u = int8([-1 1 2 -5]);
% Decode with 3 bits
ysat = udecode(u,3)
ysat =

-0.2500 0.2500 0.5000 -1.0000

Notice the last entry in u saturates to 1, the default peak input
magnitude. Change the peak input magnitude:

ysatv = udecode(u,3,6) % Set peak input magnitude to 6
ysatv =

-1.5000 1.5000 3.0000 -6.0000

The last input entry still saturates. Try wrapping the overflows:

ywrap = udecode(u,3,6,'wrap')
ywrap =

-1.5000 1.5000 3.0000 4.5000

Try adding more quantization levels:

yprec = udecode(u,5)
yprec =

-0.0625 0.0625 0.1250 -0.3125

Algorithms The algorithm adheres to the definition for uniform decoding specified
in ITU-T Recommendation G.701. Integer input values are uniquely
mapped (decoded) from one of 2n uniformly spaced integer values to
quantized floating-point values in the range [-v,v]. The smallest
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integer input value allowed is mapped to -v and the largest integer
input value allowed is mapped to v. Values outside of the allowable
input range are either saturated or wrapped, according to specification.

The real and imaginary components of complex inputs are decoded
independently.

References [1] General Aspects of Digital Transmission Systems: Vocabulary of
Digital Transmission and Multiplexing, and Pulse Code Modulation
(PCM) Terms, International Telecommunication Union, ITU-T
Recommendation G.701, March, 1993.

See Also uencode
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Purpose Quantize and encode floating-point inputs to integer outputs

Syntax y = uencode(u,n)
y = uencode(u,n,v)
y = uencode(u,n,v,'SignFlag')

Description y = uencode(u,n) quantizes the entries in a multidimensional array of
floating-point numbers u and encodes them as integers using 2n-level
quantization. n must be an integer between 2 and 32 (inclusive). Inputs
can be real or complex, double- or single-precision. The output y and the
input u are arrays of the same size. The elements of the output y are
unsigned integers with magnitudes in the range [0, 2n-1]. Elements of
the input u outside of the range [-1,1] are treated as overflows and
are saturated.

• For entries in the input u that are less than -1, the value of the
output of uencode is 0.

• For entries in the input u that are greater than 1, the value of the
output of uencode is 2n-1.

y = uencode(u,n,v) allows the input u to have entries with
floating-point values in the range [-v,v] before saturating them (the
default value for v is 1). Elements of the input u outside of the range
[-v,v] are treated as overflows and are saturated:

• For input entries less than -v, the value of the output of uencode is 0.

• For input entries greater than v, the value of the output of uencode
is 2n-1.

y = uencode(u,n,v,'SignFlag') maps entries in a multidimensional
array of floating-point numbers u whose entries have values in the
range [-v,v] to an integer output y. Input entries outside this range
are saturated. The integer type of the output depends on the string
'SignFlag' and the number of quantization levels 2n. The string
'SignFlag' can be one of the following:

• 'signed': Outputs are signed integers with magnitudes in the range
[-2n/2, (2n/2) - 1].
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• 'unsigned' (default): Outputs are unsigned integers with
magnitudes in the range [0, 2n-1].

The output data types are optimized for the number of bits as shown
in the table below.

n Unsigned Integer Signed Integer

2 to 8 uint8 int8

9 to 16 uint16 int16

17 to 32 uint32 int32

Examples Map floating-point scalars in [-1, 1] to uint8 (unsigned) integers, and
produce a staircase plot. Note that the horizontal axis plots from -1 to 1
and the vertical axis plots from 0 to 7 (2^3-1):

u = [-1:0.01:1];
y = uencode(u,3);
plot(u,y,'.')

Now look at saturation effects when you under specify the peak value
for the input:
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u = [-2:0.5:2];
y = uencode(u,5,1)
y =

0 0 0 8 16 24 31 31 31

Now look at the output for

u = [-2:0.5:2];
y = uencode(u,5,2,'signed')
y =

-16 -12 -8 -4 0 4 8 12 15

Algorithms uencode maps the floating-point input value to an integer value
determined by the requirement for 2n levels of quantization. This
encoding adheres to the definition for uniform encoding specified in
ITU-T Recommendation G.701. The input range [-v,v] is divided
into 2n evenly spaced intervals. Input entries in the range [-v,v] are
first quantized according to this subdivision of the input range, and
then mapped to one of 2n integers. The range of the output depends on
whether or not you specify that you want signed integers.

References [1] General Aspects of Digital Transmission Systems: Vocabulary of
Digital Transmission and Multiplexing, and Pulse Code Modulation
(PCM) Terms, International Telecommunication Union, ITU-T
Recommendation G.701, March, 1993.

See Also udecode
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Purpose Inverse of shiftdata

Syntax y = unshiftdata(x,perm,nshifts)

Description y = unshiftdata(x,perm,nshifts) restores the orientation of the
data that was shifted with shiftdata. The permutation vector is given
by perm, and nshifts is the number of shifts that was returned from
shiftdata.

unshiftdata is meant to be used in tandem with shiftdata. These
functions are useful for creating functions that work along a certain
dimension, like filter, goertzel, sgolayfilt, and sosfilt.

Examples Example 1

This example shifts x, a 3-by-3 magic square, permuting dimension 2
to the first column. unshiftdata shifts x back to its original shape.

1. Create a 3-by-3 magic square:

x = fi(magic(3))

x =

8 1 6
3 5 7
4 9 2

2. Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

This command returns the permutation vector, perm, and the number of
shifts, nshifts, are returned along with the shifted matrix, x:

x =
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8 3 4
1 5 9
6 7 2

perm =

2 1

nshifts =

[]

3. Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

8 1 6
3 5 7
4 9 2

Example 2

This example shows how shiftdata and unshiftdata work when you
define dim as empty.

1. Define x as a row vector:

x = 1:5

x =

1 2 3 4 5
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2. Define dim as empty to shift the first non-singleton dimension of x
to the first column:

[x,perm,nshifts] = shiftdata(x,[])

This command returns x as a column vector, along with perm, the
permutation vector, and nshifts, the number of shifts:

x =

1
2
3
4
5

perm =

[]

nshifts =

1

3. Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

1 2 3 4 5

See Also ipermute | shiftdata | shiftdim
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Purpose Upsample, apply FIR filter, and downsample

Syntax yout = upfirdn(xin,h)
yout = upfirdn(xin,h,p)
yout = upfirdn(xin,h,p,q)

Description upfirdn performs a cascade of three operations:

1 Upsampling the input data in the matrix xin by a factor of the
integer p (inserting zeros)

2 FIR filtering the upsampled signal data with the impulse response
sequence given in the vector or matrix h

3 Downsampling the result by a factor of the integer q (throwing away
samples)

upfirdn has been implemented as a MEX-file for maximum speed,
so only the outputs actually needed are computed. The FIR filter is
usually a lowpass filter, which you must design using another function
such as firpm or fir1.

Note The function resample performs an FIR design using firls,
followed by rate changing implemented with upfirdn.

yout = upfirdn(xin,h) filters the input signal xin with the FIR filter
having impulse response h. If xin is a row or column vector, then it
represents a single signal. If xin is a matrix, then each column is
filtered independently. If h is a row or column vector, then it represents
one FIR filter. If h is a matrix, then each column is a separate FIR
impulse response sequence. If yout is a row or column vector, then
it represents one signal. If yout is a matrix, then each column is a
separate output. No upsampling or downsampling is implemented with
this syntax.
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yout = upfirdn(xin,h,p) specifies the integer upsampling factor p,
where p has a default value of 1.

yout = upfirdn(xin,h,p,q) specifies the integer downsampling
factor q, where q has a default value of 1. The length of the output,
yout, is ceil(((length(xin)-1)*p+length(h))/q)

Note Since upfirdn performs convolution and rate changing, the yout
signals have a different length than xin. The number of rows of yout is
approximately p/q times the number of rows of xin.

Tips Usually the inputs xin and the filter h are vectors, in which case only
one output signal is produced. However, when these arguments are
arrays, each column is treated as a separate signal or filter. Valid
combinations are:

1 xin is a vector and h is a vector.

There is one filter and one signal, so the function convolves xin with
h. The output signal yout is a row vector if xin is a row; otherwise,
yout is a column vector.

2 xin is a matrix and h is a vector.

There is one filter and many signals, so the function convolves h with
each column of xin. The resulting yout will be an matrix with the
same number of columns as xin.

3 xin is a vector and h is a matrix.

There are many filters and one signal, so the function convolves each
column of h with xin. The resulting yout will be an matrix with the
same number of columns as h.

4 xin is a matrix and h is a matrix, both with the same number of
columns.
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There are many filters and many signals, so the function convolves
corresponding columns of xin and h. The resulting yout is an matrix
with the same number of columns as xin and h.

Examples Change the sampling rate by a factor of 147/160. This factor is used to
convert from 48kHz (DAT rate) to 44.1kHz (CD sampling rate).

L = 147; M = 160; % Interpolation/decimation factors.
N = 24*L;
h = fir1(N-1,1/M,kaiser(N,7.8562));
h = L*h; % Passband gain = L
Fs = 48e3; % Original sampling frequency-48kHz
n = 0:10239; % 10240 samples, 0.213 seconds long
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid @ 1kHz
y = upfirdn(x,h,L,M); % 9430 samples, still .213 seconds

% Overlay original (48kHz) with resampled
% signal (44.1kHz) in red.

stem(n(1:49)/Fs,x(1:49)); hold on
stem(n(1:45)/(Fs*L/M),y(13:57),'r','filled');
xlabel('Time (sec)');ylabel('Signal value');
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Algorithms upfirdn uses a polyphase interpolation structure. The number of
multiply-add operations in the polyphase structure is approximately
(LhLx-pLx)/q where Lh and Lx are the lengths of h[n] and x[n],
respectively.

A more accurate flops count is computed in the program, but the actual
count is still approximate. For long signals x[n], the formula is often
exact.

Diagnostics If p and q are large and do not have many common factors, you may
see this message:

Filter length is too large - reduce problem complexity.

Instead, you should use an interpolation function, such as interp1, to
perform the resampling and then filter the input.

References [1] Crochiere, R.E., and L.R. Rabiner, Multi-Rate Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1983, pp. 88-91.
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[2] Crochiere, R.E., “A General Program to Perform Sampling Rate
Conversion of Data by Rational Ratios,” Programs for Digital Signal
Processing, IEEE Press, New York, 1979, pp. 8.2-1 to 8.2-7.

See Also conv | decimate | downsample | filter | interp | intfilt |
resample | upsample
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Purpose Increase sampling rate by integer factor

Syntax y = upsample(x,n)
y = upsample(x,n,phase)

Description y = upsample(x,n) increases the sampling rate of x by inserting n-1
zeros between samples. x can be a vector or a matrix. If x is a matrix,
each column is considered a separate sequence. The upsampled y has
x*n samples.

y = upsample(x,n,phase) specifies the number of samples by which to
offset the upsampled sequence. phase must be an integer from 0 to n-1.

Examples Increase the sampling rate of a sequence by 3:

x = [1 2 3 4];
y = upsample(x,3);
x,y
x =

1 2 3 4
y =

1 0 0 2 0 0 3 0 0 4 0 0

Increase the sampling rate of the sequence by 3 and add a phase offset
of 2:

x = [1 2 3 4];
y = upsample(x,3,2);
x,y
x =

1 2 3 4
y =

0 0 1 0 0 2 0 0 3 0 0 4

Increase the sampling rate of a matrix by 3:

x = [1 2; 3 4; 5 6;];
y = upsample(x,3);
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x,y
x =

1 2
3 4
5 6

y =
1 2
0 0
0 0
3 4
0 0
0 0
5 6
0 0
0 0

See Also decimate | downsample | interp | interp1 | resample | spline |
upfirdn
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Purpose Undershoot metrics of bilevel waveform transitions

Syntax US = undershoot(X)
US = undershoot(X,FS)
US = undershoot(X,T)
[US,USLEV,USINST] = undershoot(...)
[...] = undershoot(...,Name,Value)
undershoot(...)

Description US = undershoot(X) returns the greatest deviations below the
final state levels of each transition in the bilevel waveform, X. The
undershoots, US, are expressed as a percentage of the difference between
the state levels. See “Undershoot” on page 1-1256. The length of US
corresponds to the number of transitions detected in the input signal.
The sample instants in X correspond to the vector indices. To determine
the transitions, undershoot estimates the state levels of the input
waveform by a histogram method. undershoot identifies all regions
that cross the upper-state boundary of the low state and the lower-state
boundary of the high state. The low-state and high-state boundaries are
expressed as the state level plus or minus a multiple of the difference
between the state levels. See “State-Level Tolerances” on page 1-1258.

US = undershoot(X,FS) specifies the sampling frequency, FS, in hertz.
The sampling frequency determines the sample instants corresponding
to the elements in X. The first sample instant in X corresponds to t=0.

US = undershoot(X,T) specifies the sample instants, T, as a vector
with the same number of elements as X.

[US,USLEV,USINST] = undershoot(...) returns the levels, USLEV,
and sample instants, USINST, of the undershoots for each transition.

[...] = undershoot(...,Name,Value) returns the greatest
deviations below the final state level with additional options specified
by one or more Name,Value pair arguments.

undershoot(...) plots the bilevel waveform and marks the location
of the undershoot of each transition as well as the lower- and upper
reference-level instants and the associated reference levels. undershoot
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also plots the state levels and associated lower- and upper-state
boundaries.

Input
Arguments

X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the
bilevel waveform, X.

Name-Value Pair Arguments

’PctRefLevels’

Reference levels as a percentage of the waveform amplitude. The
lower-state level is defined to be 0 percent. The upper-state level is
defined to be 100 percent. The value of 'PCTREFLEVELS' is a 2-element
real row vector whose elements correspond to the lower and upper
percent reference levels.

Default: [10 90]

’Region’

Specify the region over which to perform the undershoot computation.
Valid values for 'Region' are 'Preshoot' or 'Postshoot'. If you
specify 'Preshoot', the end of the pretransition aberration region is
defined as the last instant when the signal exits the first state. If you
specify 'Postshoot', the start of the posttransition aberration region is
defined as the instant when the signal enters the second state.

Default: 'Postshoot'

’SeekFactor’
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Aberration region duration. Specifies the duration of the region over
which to compute the undershoot for each transition as a multiple of the
corresponding transition duration. The edge of the waveform may be
reached, or a complete intervening transition may be detected, before
the duration aberration region duration elapses. In such cases, the
duration is truncated to the edge of the waveform or the start of the
intervening transition.

Default: 3

’StateLevels’

Lower- and upper-state levels. Specify the levels to use for the lower-
and upper-state levels as a 2-element real row vector whose first and
second elements correspond to the lower- and upper-state levels of the
input waveform.

’Tolerance’

Specify the tolerance that the initial and final levels of each transition
must be within the respective state levels. The 'Tolerance' value is a
scalar expressing a percentage of the difference between the upper- and
lower-state levels. See “State-Level Tolerances” on page 1-1258.

Default: 2

Output
Arguments

US

Undershoots expressed as a percentage of the state levels. The
undershoot percentages are computed based on the greatest deviation
from the final state level in each transition. By default undershoots
are computed for posttransition aberration regions. See “Undershoot”
on page 1-1256.

USLEV

Level of the pretransition or posttransition undershoot.

USINST
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Sample instants of pretransition or posttransition undershoots. If you
specify the sampling frequency or sampling instants, the undershoot
instants are in seconds. If you do not specify the sampling frequency
or sampling instants, the undershoot instants are the indices of the
input vector.

Definitions Undershoot

For a positive-going (positive-polarity) pulse, undershoot expressed as
a percentage is

100 2

2 1

(
(

)
)

S
S S

U


where U is the greatest deviation below the high-state level, S2 is the
high state, and S1 is the low state.

For a negative-going (negative-polarity) pulse, undershoot expressed as
a percentage is

100 1

2 1

( )
( )

S
S S

U


The following figure illustrates the calculation of undershoot for a
positive-going transition.
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The red dashed lines indicate the estimated state levels. The
double-sided black arrow depicts the difference between the high- and
low-state levels. The solid black line indicates the difference between
the high-state level and the undershoot value.
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State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries.
These state boundaries are defined as the state level plus or minus a
scalar multiple of the difference between the high state and low state.
To provide a useful tolerance region, the scalar is typically a small
number such as 2/100 or 3/100. In general, the α% tolerance region for
the low state is defined as

S S S1 100 2 1  ( )

where S1 is the low-state level and S2 is the high-state level. Replace
the first term in the equation with S2 to obtain the α% tolerance region
for the high state.

The following figure illustrates lower and upper 2% state boundaries
(tolerance regions) for a positive-polarity bilevel waveform. The red
dashed lines indicate the estimated state levels.
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Examples Undershoot Percentage in Posttransition Aberration Region

Determine the maximum percent undershoot relative to the high-state
level in a 2.3 V clock waveform.
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Load the 2.3 V clock data. Plot the waveform. In this example, you
see that the maximum undershoot in the posttransition region occurs
near index 23.

load('transitionex.mat', 'x');
plot(x);
set(gca,'xtick',[1 5 12 19 23 30 40]);
grid on;

Determine the maximum percent undershoot.

us = undershoot(x);

Undershoot Percentage, Levels, and Sample Instant in
Posttransition Aberration Region

Determine the maximum percent undershoot relative to the high-state
level, the level of the undershoot, and the sample instant in a 2.3 V
clock waveform.

Load the 2.3 V clock data with sampling instants. Plot the waveform.
The clock data is sampled at 4 MHz.

load('transitionex.mat', 'x','t');
plot(t,x);

Determine the maximum percent undershoot, the level of the
undershoot in volts, and the sampling instant where the maximum
undershoot occurs. Plot the result.

[us,uslev,usinst] = undershoot(x,t);
plot(t.*1e6,x); xlabel('Microseconds');
hold on; grid on;
plot(usinst*1e6,uslev,'ro','markerfacecolor',[1 0 0]);

Undershoot Percentage, Levels, and Sample Instant in
Pretransition Aberration Region

Determine the maximum percent undershoot relative to the low-state
level, the level of the undershoot, and the sample instant in a 2.3
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V clock waveform. Specify the 'Region' as 'Preshoot' to output
pre-transition metrics.

Load the 2.3 V clock data with sampling instants. Plot the waveform.
The clock data is sampled at 4 MHz.

load('transitionex.mat', 'x','t');
plot(t,x);

Determine the maximum percent undershoot, the level of the
undershoot in volts, and the sampling instant where the maximum
undershoot occurs. Plot the result.

load('transitionex.mat', 'x','t');
[us,uslev,usinst] = undershoot(x,t,'Region','Preshoot');
plot(t.*1e6,x); xlabel('Microseconds');
hold on; grid on;
plot(usinst*1e6,uslev,'ro','markerfacecolor',[1 0 0]);

References [1] IEEE Standard on Transitions, Pulses, and Related Waveforms,
IEEE Standard 181, 2003, pp. 15–17.

See Also overshoot | settlingtime | statelevels

1-1261



validstructures

Purpose Structures for specification object with design method

Syntax filtstruct = validstructures(D)
C = validstructures(D,METHOD)
Cs = validstructures(D,...,'SystemObject',sysobjflag)

Description filtstruct = validstructures(D) returns a structure array
containing all valid filter structures for the filter specification object,
D, organized by design method. Each design method is a field in the
structure array, filtstruct. The fields contain a cell array of strings.

C = validstructures(D,METHOD) returns the valid structures for the
filter specification object, D, and the design method, METHOD, in a cell
array of strings.

Cs = validstructures(D,...,'SystemObject',sysobjflag)
returns the valid structures for designing a filter System object when
sysobjflag is true. To use System objects, you must have the DSP
System Toolbox product installed. When sysobjflag is false, the
function returns valid structures for designing dfilt and mfilt objects,
as described previously. Design methods and design options for filter
System objects are not necessarily the same as those for dfilt and
mfilt objects.

Examples Design a default lowpass filter specification object. Return all valid
design methods and structures in a structure array. Display the
fieldnames to see all valid design methods. Display the valid filter
structures for the equiripple field.

D = fdesign.lowpass;
filtstruct = validstructures(D);
fieldnames(filtstruct)
filtstruct.equiripple

Create a highpass filter of order 50 with a 3-dB frequency of 0.2. Obtain
the available structures for a Butterworth design.
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D = fdesign.highpass('N,F3dB',50,0.2);
C = validstructures(D,'butter');

If you have DSP System Toolbox software installed, use the
'SystemObject',sysobjflag syntax to return valid structures for a
filter System object:

Cs = validstructures(D,'butter','SystemObject',true);

See Also design | designmethods | designopts | fdesign
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Purpose Voltage controlled oscillator

Syntax y = vco(x,fc,fs)
y = vco(x,[Fmin Fmax],fs)

Description y = vco(x,fc,fs) creates a signal that oscillates at a frequency
determined by the real input vector or array x with sampling frequency
fs. fc is the carrier or reference frequency; when x is 0, y is an fc Hz
cosine with amplitude 1 sampled at fs Hz. x ranges from -1 to 1, where
x = -1 corresponds to 0 frequency output, x = 0 corresponds to fc, and
x = 1 corresponds to 2*fc. Output y is the same size as x.

y = vco(x,[Fmin Fmax],fs) scales the frequency modulation range
so that ±1 values of x yield oscillations of Fmin Hz and Fmax Hz
respectively. For best results, Fmin and Fmax should be in the range 0
to fs/2.

By default, fs is 1 and fc is fs/4.

If x is a matrix, vco produces a matrix whose columns oscillate
according to the columns of x.

Examples Generate two seconds of a signal sampled at 10,000 samples/second
whose instantaneous frequency is a triangle function of time:

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);

Plot the spectrogram of the generated signal:

spectrogram(x,kaiser(256,5),220,512,fs,'yaxis')
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Algorithms vco performs FM modulation using the modulate function.

Diagnostics If any values of x lie outside [-1, 1], vco gives the following error
message.

X outside of range [-1,1].

See Also demod | modulate
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Purpose Window function gateway

Syntax window
w = window(fhandle,n)
w = window(fhandle,n,winopt)

Description window opens the Window Design and Analysis Tool (wintool).

w = window(fhandle,n) returns the n-point window, specified by its
function handle, fhandle, in column vector w. Function handles are
window function names preceded by an @.

@barthannwin
@bartlett
@blackman
@blackmanharris
@bohmanwin
@chebwin
@flattopwin
@gausswin
@hamming
@hann
@kaiser
@nuttallwin
@parzenwin
@rectwin
@taylorwin
@triang
@tukeywin

1-1266



window

Note For chebwin, kaiser, and tukeywin, you must use include a
window parameter using the syntax below.

For more information on each window function and its option(s), refer
to its reference page.

w = window(fhandle,n,winopt) returns the window specified by its
function handle, fhandle, and its winopt value or sampling flag string.
For chebwin, kaiser, and tukeywin, you must enter a winopt value.
For the other windows listed below, winopt values are optional.

Window winopt Description winopt Value

blackman sampling flag string 'periodic'or
'symmetric'

chebwin sidelobe attenuation
relative to mainlobe

numeric

flattopwin sampling flag string 'periodic'or
'symmetric'

gausswin alpha value (reciprocal of
standard deviation)

numeric

hamming sampling flag string 'periodic'or
'symmetric'

hann sampling flag string 'periodic'or
'symmetric'

kaiser beta value numeric

taylorwin 1. number of sidelobes
2. maximum sidelobe
level in dB relative to
mainlobe peak

1. integer greater than or
equal to 1
2. negative value

tukeywin ratio of taper to constant
sections

numeric
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Examples Create Blackman Harris, Hamming, and Gaussian windows and plot
them in the same WVTool.

N = 65;
w = window(@blackmanharris,N);
w1 = window(@hamming,N);
w2 = window(@gausswin,N,2.5);
wvtool(w,w1,w2)

See Also barthannwin | bartlett | blackman | blackmanharris | bohmanwin
| chebwin | flattopwin | gausswin | hamming | hann | kaiser |
nuttallwin | parzenwin | rectwin | triang | taylorwin | tukeywin
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Purpose FIR filter using windowed impulse response

Syntax h = window(d,'window',fcnhndl)
h = window(d,win)

description
Note This is a description of the overloaded method used in conjunction
with fdesign to design a filter from a filter specification object. To
access the window function gateway see window.

h = window(d,'window',fcnhndl) designs an FIR filter using
the specifications in filter specification object d. Depending on the
specification type of d, the returned filter is either a single-rate digital
filter — a dfilt, or a multirate digital filter — an mfilt.

fcnhndl is a handle to a filter design function that returns a window
vector, such as the hamming or blackman functions. fcnarg is an
optional argument that returns a window. You pass the function to
window. Refer to example 1 in the following section to see the function
argument used to design the filter.

h = window(d,win) designs a filter using the vector you supply in win.
The length of vector win must be the same as the impulse response of
the filter, which is equal to the filter order plus one.

Examples Construct a lowpass filter specification object of order 10 with a cutoff
frequency of 12 kilohertz. We use a sampling frequency of 48 kilohertz.
Next we use a function handle to the function Kaiser to provide the
window.

d=fdesign.lowpass('n,fc',10,12000,48000);
Hd=window(d,'window',@kaiser);
fvtool(Hd);
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See Also design | designmethods | fdesign

1-1270



wintool

Purpose Open Window Design and Analysis Tool

Syntax wintool
wintool(obj1,obj2,...)

Description wintool opens the Window Design and Analysis Tool (WinTool), a
graphical user interface (GUI) for designing and analyzing spectral
windows. It opens with a default 64-point Hamming window.

wintool(obj1,obj2,...) opens WinTool with the sigwin window
object(s) specified in obj1, obj2, etc.

Note A related tool, wvtool, is available for displaying, annotating,
or printing windows.
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wintool has three panels:

• Window Viewer displays the time domain and frequency domain
representations of the selected window(s). The currently active
window is shown in bold. Three window measurements are shown
below the plots.

- Leakage factor — ratio of power in the sidelobes to the total
window power

- Relative sidelobe attenuation — difference in height from the
mainlobe peak to the highest sidelobe peak

- Mainlobe width (-3dB) — width of the mainlobe at 3 dB below
the mainlobe peak
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• Window List lists the windows available for display in the Window
Viewer. Highlight one or more windows to display them. The
Window List buttons are:

- Add a new window — Adds a default Hamming window
with length 64 and symmetric sampling. You can change the
information for this window by applying changes made in the
Current Window Information panel.

- Copy window — Copies the selected window(s).

- Save to workspace— Saves the selected window(s) as vector(s)
to the MATLAB workspace. The name of the window in wintool is
used as the vector name.

- Delete— Removes the selected window(s) from the window list.

• Current Window Information displays information about the
currently active window. The active window name is shown in the
Name field. To make another window active, select its name from
the Name menu.

Window Parameters

Each window is defined by the parameters in the Current Window
Information panel. You can change the current window’s characteristics
by changing its parameters and clicking Apply. The parameters of the
current window are

• Name — Name of the window. The name is used for the legend in
the Window Viewer, in the Window List, and for the vector saved to
the workspace. You can either select a name from the menu or type
the desired name in the edit box.

• Type— Algorithm for the window. Select the type from the menu.
All Signal Processing Toolbox windows are available.

• MATLAB code — Any valid MATLAB expression that returns a
vector defining the window if Type = User Defined.

• Length — Number of samples.
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• Parameter — Additional parameter for windows that require
it, such as Chebyshev, which requires you to specify the sidelobe
attenuation. Note that the title “Parameter” changes to the
appropriate parameter name.

• Sampling— Type of sampling to use for generalized cosine windows
(Hamming, Hann, and Blackman) — Periodic or Symmetric.
Periodic computes a length n+1 window and returns the first n
points, and Symmetric computes and returns the n points specified
in Length.

WinTool Menus

In addition to the usual menus items, wintool contains these
wintool-specific menu commands:

File menu:

• Export — Exports window coefficient vectors to the MATLAB
workspace, a text file, or a MAT-file.

In the Window List in WinTool, highlight the window(s) you want
to export and then select File > Export. For exporting to the
workspace or a MAT-file, specify the variable name for each window
coefficient or object. To overwrite variables in the workspace, select
the Overwrite variables check box.

• Full View Analysis — Copies the windows shown in both plots to
a separate wvtool figure window. This is useful for printing and
annotating. This option is also available with the Full View Analysis
toolbar button.

View menu:

• Time domain— Select to show the time domain plot in the Window
Viewer panel.

• Frequency domain— Select to show the frequency domain plot in
the Window Viewer panel.
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• Legend— Toggles the window name legend on and off. This option
is also available with the Legend toolbar button.

• Analysis Parameters — Controls the response plot parameters,
including number of points, range, x- and y-axis units, sampling
frequency, and normalized magnitude.

You can also access the Analysis Parameters by right-clicking the
x-axis label of a plot in the Window Viewer panel. The x-axis units for
the time domain plot depend on the selected Sampling Frequency
units.

Frequency Domain Time Domain

Hz sec

kHz ms

MHz µs

GHz picosec

Tools menu:

• Zoom In — Zooms in along both x- and y-axes.

• Zoom X— Zooms in along the x-axis only. Drag the mouse in the x
direction to select the zoom area.

• Zoom Y— Zooms in along the y-axis only. Drag the mouse in the y
direction to select the zoom area.

• Full View — Returns to full view.
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See Also window | wvtool
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Purpose Open Window Visualization Tool

Syntax wvtool(WindowVector)
wvtool(WinObj)
wvtool(WindowVector1,WinObj1,...,WinObjN,WindowVectorN)
H = wvtool(...)

Description wvtool(WindowVector) opens the Window Visualization Tool (WVTool)
with time and frequency domain plots of the window vector specified in
WindowVector. WindowVector must be a real-valued row or column
vector. By default, the frequency domain plot is the magnitude squared
of the Fourier transform of the window vector in decibels (dB). You can
generate window vectors for a number of common window functions
using the Signal Processing Toolbox software. See window for a list of
supported window functions.

wvtool(WinObj) opens WVTool with time and frequency domain plots
of the sigwin object WinObj. See sigwin for a list of supported signal
processing window objects.

wvtool(WindowVector1,WinObj1,...,WinObjN,WindowVectorN)
opens WVTool with time and frequency domain plots
of the window vectors or window objects specified in
WindowVector1,WinObj1,...,WinObjN, WindowVectorN.

H = wvtool(...) returns the figure handle H.

Note A related tool, wintool, is available for designing and analyzing
windows.
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Note If you launch WVTool from FDATool, an Add/Replace icon,
which controls how new windows are added from FDATool, appears
on the toolbar.

WVTool Menus

In addition to the usual menus items, wvtool contains these
wvtool-specific menu commands:

File menu:

• Export— Exports the displayed plot(s) to a graphic file.
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Edit menu:

• Copy figure — Copies the displayed plot(s) to the clipboard
(available only on Windows platforms).

• Copy options— Displays the Preferences dialog box (available only
on Windows platforms).

• Figure, Axes, and Current Object Properties — Displays the
Property Editor.

View menu:

• Time domain— Check to show the time domain plot.

• Frequency domain— Check to show the frequency domain plot.

• Legend— Toggles the window name legend on and off. This option
is also available with the Legend toolbar button.

• Analysis Parameters — Controls the response plot parameters,
including number of points, range, x- and y-axis units, sampling
frequency, and normalized magnitude.

You can also access the Analysis Parameters by right-clicking the
x-axis label of a plot in the Window Viewer panel.

• Insert menu:

You use the Insert menu to add labels, titles, arrows, lines, text, and
axes to your plots.

Tools menu:

• Edit Plot — Turns on plot editing mode

• Zoom In — Zooms in along both x- and y-axes.
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• Zoom X— Zooms in along the x-axis only. Drag the mouse in the x
direction to select the zoom area.

• Zoom Y— Zooms in along the y-axis only. Drag the mouse in the y
direction to select the zoom area.

• Full View — Returns to full view.

Examples Compare Hamming, Hann, and Gaussian windows:

wvtool(hamming(64),hann(64),gausswin(64))

Compare Kaiser window objects with different beta values:

H = sigwin.kaiser(128,1.5);
% Kaiser window with beta=4.5
H1 = sigwin.kaiser(128,4.5);
wvtool(H,H1)

See Also fdatool | sigwin | window | wintool
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Purpose Cross-correlation

Syntax c = xcorr(x,y)
c = xcorr(x)
c = xcorr(x,y,'option')
c = xcorr(x,'option')
c = xcorr(x,y,maxlags)
c = xcorr(x,maxlags)
c = xcorr(x,y,maxlags,'option')
c = xcorr(x,maxlags,'option')
[c,lags] = xcorr(...)
[c,lags] = xcorr(gpuArrayX,gpuArrayY,maxlags,'option')

Description xcorr estimates the cross-correlation sequence of a random process.
Autocorrelation is handled as a special case.

The true cross-correlation sequence is

R m E x y E x yxy n m n n n m( ) { } { }* *= =+ −

where xn and yn are jointly stationary random processes, −∞ < n <
∞, and E {·} is the expected value operator. xcorr must estimate the
sequence because, in practice, only a finite segment of one realization of
the infinite-length random process is available.

c = xcorr(x,y) returns the cross-correlation sequence in a length
2*N-1 vector, where x and y are length N vectors (N>1). If x and y are
not the same length, the shorter vector is zero-padded to the length
of the longer vector.

By default, xcorr computes raw correlations with no normalization.
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The output vector c has elements given by:

c m R m N m Nxy( ) ( ) , ,    


1 2 2 1

In general, the correlation function requires normalization to produce
an accurate estimate (see below).

c = xcorr(x) is the autocorrelation sequence for the vector x. If x is an
N-by-P matrix, c is a matrix with 2N-1 rows whose P2 columns contain
the cross-correlation sequences for all combinations of the columns of x.
For more information on matrix processing with xcorr, see “Multiple
Channels”.

xcorr produces correlations identically equal to 1.0 at zero lag only
when you perform an autocorrelation and only when you set the
'coeff' option. For example,

x=0:0.01:10;
X = sin(x);
[r,lags]=xcorr(X,'coeff');
max(r)

c = xcorr(x,y,'option') specifies a normalization option for the
cross-correlation, where 'option' is

• 'biased': Biased estimate of the cross-correlation function

R m
N

R mxy biased xy
 

, ( ) ( )
1

• 'unbiased': Unbiased estimate of the cross-correlation function

R m
N m

R mxy unbiased xy
 




, ( )
| |

( )
1

• 'coeff': Normalizes the sequence so the autocorrelations at zero lag
are identically 1.0.
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• 'none', to use the raw, unscaled cross-correlations (default)

See [1] for more information on the properties of biased and unbiased
correlation estimates.

c = xcorr(x,'option') specifies one of the above normalization
options for the autocorrelation.

c = xcorr(x,y,maxlags) returns the cross-correlation sequence over
the lag range [-maxlags:maxlags]. Output c has length 2*maxlags+1.

c = xcorr(x,maxlags) returns the autocorrelation sequence over the
lag range [-maxlags:maxlags]. Output c has length 2*maxlags+1. If
x is an N-by-P matrix, c is a matrix with 2*maxlags+1 rows whose P2

columns contain the autocorrelation sequences for all combinations
of the columns of x.

c = xcorr(x,y,maxlags,'option') specifies both a maximum number
of lags and a scaling option for the cross-correlation.

c = xcorr(x,maxlags,'option') specifies both a maximum number
of lags and a scaling option for the autocorrelation.

[c,lags] = xcorr(...) returns a vector of the lag indices at which c
was estimated, with the range [-maxlags:maxlags]. When maxlags is
not specified, the range of lags is [-N+1:N-1].

In all cases, the cross-correlation or autocorrelation computed by xcorr
has the zeroth lag in the middle of the sequence, at element or row
maxlags+1 (element or row N if maxlags is not specified).

[c,lags] = xcorr(gpuArrayX,gpuArrayY,maxlags,'option')
returns the autocorrelation or cross-correlation sequence for input
objects of class gpuArray. See “Use gpuArray Data” for details on
gpuArray objects. Using xcorr with gpuArray objects requires
Parallel Computing Toolbox software and a CUDA-enabled
NVIDIA GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details. The returned autocorrelation or cross-correlation sequence,
c, is a gpuArray object.
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“GPU Acceleration for Autocorrelation Sequence Estimation” on page
1-1285 shows you how to compute the autocorrelation sequence on the
GPU.

Examples The second output, lags, is useful for plotting the cross-correlation
or autocorrelation. For example, the estimated autocorrelation of
zero-mean Gaussian white noise cww(m) can be displayed for -10 ≤ m
≤ 10 using:

ww = randn(1000,1);
[c_ww,lags] = xcorr(ww,10,'coeff');
stem(lags,c_ww)

Swapping the x and y input arguments reverses (and conjugates) the
output correlation sequence. For row vectors, the resulting sequences
are reversed left to right; for column vectors, up and down. The
following example illustrates this property (mat2str is used for a
compact display of complex numbers):

x = [1,2i,3]; y = [4,5,6];
[c1,lags] = xcorr(x,y);
c1 = mat2str(c1,2), lags
c2 = conj(fliplr(xcorr(y,x)));
c2 = mat2str(c2,2)

For the case where input argument x is a matrix, the output columns
are arranged so that extracting a row and rearranging it into a square
array produces the cross-correlation matrix corresponding to the lag of
the chosen row. For example, the cross-correlation at zero lag can be
retrieved by:

X = randn(2,2);
[M,P] = size(X);
c = xcorr(X);
c0 = zeros(P); c0(:) = c(M,:) % Extract zero-lag row
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You can calculate the matrix of correlation coefficients that the
MATLAB function corrcoef generates by substituting:

c = xcov(X,'coef')

in the last example. The function xcov subtracts the mean and then
calls xcorr.

Use fftshift to move the second half of the sequence starting at the
zeroth lag to the front of the sequence. fftshift swaps the first and
second halves of a sequence.

GPU Acceleration for Autocorrelation Sequence Estimation

The following example requires Parallel Computing
Toolbox software and a CUDA-enabled NVIDIA
GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details.

Create a signal consisting of a 10-Hz sine wave in additive noise. Use
gpuArray to create a gpuArray object stored on your computer’s GPU.

t = 0:0.001:10-0.001;
x = cos(2*pi*10*t)+randn(size(t));
X = gpuArray(x);

Compute the normalized autocorrelation sequence to lag 200.

[xc,lags] = xcorr(X,200,'coeff');

The output, xc, is a gpuArray object. Use gather to transfer the data
from the GPU to the MATLAB workspace as a double-precision vector.

xc = gather(xc);

Algorithms For more information on estimating covariance and correlation
functions, see [1].
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References [1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd
Edition, Prentice-Hall, Englewood Cliffs, NJ, 1996.

See Also conv | corrcoef | cov | xcorr2 | xcov
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Purpose 2–D cross-correlation

Syntax C = xcorr2(A,B)
A = xcorr2(A)
C = xcorr2(gpuArrayA,gpuArrayB)

Description C = xcorr2(A,B) returns the cross-correlation of matrices A and B with
no scaling. xcorr2 is the two-dimensional version of xcorr. It has its
maximum value when the two matrices are aligned so that they are
shaped as similarly as possible.

If matrix A has dimensions (Ma, Na) and matrix B has dimensions (Mb,
Nb), The equation for the two-dimensional discrete cross-correlation is

C i j A m n conj B m i n j
n

Na

m

Ma
( , ) ( , ) ( ( , ))

( )( )
= ⋅ + +

=

−

=

−

∑∑
0

1

0

1

where 0 1≤ < + −i Ma Mb and 0 1≤ < + −j Na Nb .

A = xcorr2(A) is the autocorrelation matrix of input matrix A. It is
identical to xcorr2(A,A).

C = xcorr2(gpuArrayA,gpuArrayB) returns the cross-correlation of
the input matrices of class gpuArray. See “Use gpuArray Data”
for details on gpuArray objects. Using xcorr2 with gpuArray
objects requires Parallel Computing Toolbox software and a
CUDA-enabled NVIDIA GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details. The output cross-correlation matrix, C, is a gpuArray object.
See “GPU Acceleration for Cross-Correlation Matrix Computation” on
page 1-1292 for an example of using the GPU to compute the
cross-correlation.

Examples Output Matrix Size

If matrix I1 has dimensions (4,3) and matrix I2 has dimensions (2,2),
the following equations determine the number of rows and columns of
the output matrix:
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C I I

C I I
full rows rows

full columns

rows

columns

= + − = + − =

= +

1 2 1 4 2 1 5

1 2ccolumns − = + − =1 3 2 1 4

The resulting matrix is

C

c c c c
c c c c
c c c c
c c c c
c c

full =

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

40 441 42 43c c

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Computing a Specific Element

C I Ivalid columns columnscolumns
= − + =1 2 1 2

In cross-correlation, the value of an output element is computed as a
weighted sum of neighboring elements. For example, suppose the first
input matrix represents an image and is defined as

I1 = [17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9]

The second input matrix also represents an image and is defined as

I2 = [8 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (2,4) output element
(zero-based indexing) using these steps:
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1 Slide the center element of I2 so that lies on top of the (1,3) element
of I1.

2 Multiply each weight in I2 by the element of I1 underneath.

3 Sum the individual products from step 2.

The (2,4) output element from the cross-correlation is

1 8 8 1 15 6 7 3 14 5 16 7 13 4 20 9 22 2 585⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

The normalized cross-correlation of the (2,4) output element is
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585/sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.8070

where I1p = [1 8 15; 7 14 16; 13 20 22].

Recovery of Template Shift with Cross-Correlation

Shift a template by a known amount and recover the shift using
cross-correlation.

Create a template in an 11-by-11 matrix. Create a 22-by-22 matrix and
shift the original template by 8 along the row dimension and 6 along
the column dimension.

template = .2*ones(11);
template(6,3:9) = .6;
template(3:9,6) = .6;
offsetTemplate = .2*ones(22);
offset = [8 6];
offsetTemplate( (1:size(template,1))+offset(1),...

(1:size(template,2))+offset(2) ) = template;

Plot the original and shifted templates.

imagesc(offsetTemplate); colormap gray;
hold on;
imagesc(template);
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Cross-correlate the two matrices and find the maximum absolute value
of the cross-correlation. Use the position of the maximum absolute
value to determine the shift in the template. Check the result against
the known shift.

cc = xcorr2(offsetTemplate,template);
[max_cc, imax] = max(abs(cc(:)));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
corr_offset = [ (ypeak-size(template,1)) (xpeak-size(template,2)) ];
isequal(corr_offset,offset)
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The returned 1 indicates that the shift obtained the cross-correlation
equals the known the template shift in both the row and column
dimension.

GPU Acceleration for Cross-Correlation Matrix Computation

The following example requires Parallel Computing
Toolbox software and a CUDA-enabled NVIDIA
GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details.

Repeat the example “Recovery of Template Shift with Cross-Correlation”
on page 1-1290. For convenience, the code to create the original and
shifted templates is repeated.

template = .2*ones(11);
template(6,3:9) = .6;
template(3:9,6) = .6;
offsetTemplate = .2*ones(22);
offset = [8 6];
offsetTemplate( (1:size(template,1))+offset(1),...

(1:size(template,2))+offset(2) ) = template;

Put the original and shifted template matrices on your GPU using
gpuArray objects.

template = gpuArray(template);
offsetTemplate = gpuArray(offsetTemplate);

Compute the cross-correlation on the GPU.

cc = xcorr2(offsetTemplate,template);

Return the result to the MATLAB workspace using gather, use the
maximum absolute value of the cross-correlation to determine the shift,
and compare the result with the known shift.

cc = gather(cc);
[max_cc, imax] = max(abs(cc(:)));
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[ypeak, xpeak] = ind2sub(size(cc),imax(1));
corr_offset = [ (ypeak-size(template,1)) (xpeak-size(template,2)) ];
isequal(corr_offset,offset)

See Also conv2 | filter2 | xcorr
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Purpose Cross-covariance

Syntax c = xcov(x,y)
c = xcov(x)
c = xcov(x,'option')
[c,lags] = xcov(x,y,maxlags)
[c,lags] = xcov(x,maxlags)
[c,lags] = xcov(x,maxlags)
[c,lags] = xcov(x,y,maxlags,'option')
[c,lags] = xcov(gpuArrayX,gpuArrayY,maxlags,'option')

Description xcov estimates the cross-covariance sequence of random processes.
Autocovariance is handled as a special case.

The true cross-covariance sequence is the cross-correlation of
mean-removed sequences

  xy n m x n ym E x y( ) {( )( ) )}= − −+
∗

where μx and μy are the mean values of the two stationary random
processes, ∗ denotes the complex conjugate, and E{·} is the expected
value operator. xcov estimates the sequence because, in practice, access
is available to only a finite segment of the infinite-length random
process.

c = xcov(x,y) returns the cross-covariance sequence in a length 2N-1
vector, where x and y are length N vectors. For information on how
arrays are processed with xcov, see “Multiple Channels”.

c = xcov(x) is the autocovariance sequence for the vector x. Where x
is an N-by-P array, v = xcov(x) returns an array with 2N-1 rows whose
P2 columns contain the cross-covariance sequences for all combinations
of the columns of x.

By default, xcov computes raw covariances with no normalization. For
a length N vector
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The output vector c has elements given by c(m) = cxy(m-N), m = 1, ...,
2N-1.

The covariance function requires normalization to estimate the function
properly.

c = xcov(x,'option') specifies a scaling option, where 'option' is

• 'biased', for biased estimates of the cross-covariance function

• 'unbiased', for unbiased estimates of the cross-covariance function

• 'coeff', to normalize the sequence so the auto-covariances at zero
lag are identically 1.0

• 'none', to use the raw, unscaled cross-covariances (default)

See [1] for more information on the properties of biased and unbiased
correlation and covariance estimates.

[c,lags] = xcov(x,y,maxlags) where x and y are length m vectors,
returns the cross-covariance sequence in a length 2*maxlags+1 vector
c. lags is a vector of the lag indices where c was estimated, that is,
[-maxlags:maxlags].

[c,lags] = xcov(x,maxlags) is the autocovariance sequence over the
range of lags [-maxlags:maxlags].

[c,lags] = xcov(x,maxlags) where x is an m-by-p array, returns
array c with 2*maxlags+1 rows whose P2 columns contain the
cross-covariance sequences for all combinations of the columns of x.

[c,lags] = xcov(x,y,maxlags,'option') specifies a scaling option,
where 'option' is the last input argument.

[c,lags] = xcov(gpuArrayX,gpuArrayY,maxlags,'option') returns
the autocovariance or cross-covariance sequence for input objects
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of class gpuArray. See “Use gpuArray Data” for details on
gpuArray objects. Using xcov with gpuArray objects requires
Parallel Computing Toolbox software and a CUDA-enabled
NVIDIA GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details. The returned autocovariance or cross-covariance sequence,
c, is a gpuArray object.

“Autocovariance using the GPU” on page 1-1296 shows you how to
compute the autocovariance sequence on the GPU.

In all cases, xcov gives an output such that the zeroth lag of the
covariance vector is in the middle of the sequence, at element or row
maxlag+1 or at m.

Examples The second output lags is useful when plotting. For example, the
estimated autocovariance of white Gaussian noise cww(m) can be
displayed for -10 ≤ m ≤ 10 using:

ww = randn(1000,1); % White Gaussian noise
[cov_ww,lags] = xcov(ww,10,'coeff');
stem(lags,cov_ww)

Autocovariance using the GPU

The following example requires Parallel Computing
Toolbox software and a CUDA-enabled NVIDIA
GPU with compute capability 1.3 or above. See
http://www.mathworks.com/products/parallel-computing/requirements.html
for details.

Create a signal consisting of a 10-Hz sine wave in additive noise. Use
gpuArray to create a gpuArray object stored on your computer’s GPU.

t = 0:0.001:10-0.001;
x = cos(2*pi*10*t)+randn(size(t));
X = gpuArray(x);
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Compute the autocovariance sequence to lag 200.

[xc,lags] = xcov(X,200);

The output, xc, is a gpuArray object. Use gather to transfer the data
from the GPU to the MATLAB workspace as a double-precision vector.

xc = gather(xc);

Algorithms xcov computes the mean of its inputs, subtracts the mean, and then
calls xcorr. For more information on estimating covariance and
correlation functions, see [1].

Diagnostics xcov does not check for any errors other than the correct number of
input arguments. Instead, it relies on the error checking in xcorr.

References [1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd
Edition, Prentice-Hall, Englewood Cliffs, NJ, 1996.

See Also conv | corrcoef | cov | xcorr | xcorr2
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Purpose Recursive digital filter design

Syntax [b,a] = yulewalk(n,f,m)

Description yulewalk designs recursive IIR digital filters using a least-squares fit
to a specified frequency response.

[b,a] = yulewalk(n,f,m) returns row vectors b and a containing the
n+1 coefficients of the order n IIR filter whose frequency-magnitude
characteristics approximately match those given in vectors f and m:

• f is a vector of frequency points, specified in the range between 0 and
1, where 1 corresponds to half the sample frequency (the Nyquist
frequency). The first point of fmust be 0 and the last point 1, with all
intermediate points in increasing order. Duplicate frequency points
are allowed, corresponding to steps in the frequency response.

• m is a vector containing the desired magnitude response at the points
specified in f.

• f and m must be the same length.

• plot(f,m) displays the filter shape.

The output filter coefficients are ordered in descending powers of z.

B z
A z

b b z b n z

a a z a n z

n

n
( )
( )

( ) ( ) ( )

( ) ( ) ( )
= + + + +

+ + + +

− −

− −
1 2 1

1 2 1

1

1




When specifying the frequency response, avoid excessively sharp
transitions from passband to stopband. You may need to experiment
with the slope of the transition region to get the best filter design.

Examples Design an 8th-order lowpass filter and overplot the desired frequency
response with the actual frequency response:

f = [0 0.6 0.6 1];
m = [1 1 0 0];
[b,a] = yulewalk(8,f,m);
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[h,w] = freqz(b,a,128);
plot(f,m,w/pi,abs(h),'--')
legend('Ideal','yulewalk Designed')
title('Comparison of Frequency Response Magnitudes')

Algorithms yulewalk performs a least-squares fit in the time domain. It
computes the denominator coefficients using modified Yule-Walker
equations, with correlation coefficients computed by inverse Fourier
transformation of the specified frequency response. To compute the
numerator, yulewalk takes the following steps:

1 Computes a numerator polynomial corresponding to an additive
decomposition of the power frequency response.

2 Evaluates the complete frequency response corresponding to the
numerator and denominator polynomials.

3 Uses a spectral factorization technique to obtain the impulse
response of the filter.

4 Obtains the numerator polynomial by a least-squares fit to this
impulse response.
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References [1] Friedlander, B., and B. Porat, “The Modified Yule-Walker Method
of ARMA Spectral Estimation,” IEEE Transactions on Aerospace
Electronic Systems, AES-20, No. 2 (March 1984), pp. 158-173.

See Also butter | cheby1 | cheby2 | ellip | fir2 | firls | maxflat | firpm
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Purpose Zero-phase response of digital filter

Syntax [Hr,w] = zerophase(b,a)
[Hr,w] = zerophase(sos)
[Hr,w] = zerophase(Hd)
[Hr,w] = zerophase(...,nfft)
[Hr,w] = zerophase(...,nfft,'whole')
[Hr,w] = zerophase(...,w)
[Hr,f] = zerophase(...,f,fs)
[Hr,w,phi] = zerophase(...)
zerophase(...)

Description [Hr,w] = zerophase(b,a) returns the zero-phase response Hr, and the
frequency vector w (in radians/sample) at which Hr is computed, given
a filter defined by numerator b and denominator a. For FIR filters
where a=1, you can omit the value a from the command. The zero-phase
response is evaluated at 512 equally spaced points on the upper half of
the unit circle.

The zero-phase response, Hr(w), is related to the frequency response,
H(w) by

H e Hr ej j( ) ( ) ( )  =

where H(ejω) is the frequency response, Hr(ω) is the zero-phase response
and [[PHI1]](w) is the continuous phase.

Note The zero-phase response is always real, but it is not the equivalent
of the magnitude response. The former can be negative while the latter
cannot be negative.

[Hr,w] = zerophase(sos) returns the zero-phase response for the
second order sections matrix, sos. sos is a K-by-6 matrix, where the
number of sections, K, must be greater than or equal to 2. If the number
of sections is less than 2, zerophase considers the input to be the

1-1301



zerophase

numerator vector, b. Each row of sos corresponds to the coefficients of a
second order (biquad) filter. The i-th row of the sos matrix corresponds
to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

[Hr,w] = zerophase(Hd) returns the zero-phase response for the
dfilt filter object, Hd, or the array of dfilt filter objects. If Hd is an
array of dfilt objects, each column of Hr is the zero-phase response of
the corresponding dfilt object.

[Hr,w] = zerophase(...,nfft) returns the zero-phase response Hr
and frequency vector w (radians/sample), using nfft frequency points
on the upper half of the unit circle.

[Hr,w] = zerophase(...,nfft,'whole') returns the zero-phase
response Hr and frequency vector w (radians/sample), using nfft
frequency points around the whole unit circle.

[Hr,w] = zerophase(...,w) returns the zero-phase response Hr and
frequency vector w (radians/sample) at frequencies in vector w. The
vector w must have at least two elements.

[Hr,f] = zerophase(...,f,fs) returns the zero-phase response Hr
and frequency vector f (Hz), using the sampling frequency fs (in Hz),
to determine the frequency vector f (in Hz) at which Hr is computed.
The vector f must have at least two elements.

[Hr,w,phi] = zerophase(...) returns the zero-phase response Hr,
frequency vector w (rad/sample), and the continuous phase component,
phi. (Note that this quantity is not equivalent to the phase response of
the filter when the zero-phase response is negative.)

zerophase(...) plots the zero-phase response versus frequency. The
plot is displayed in the current figure window. If the input is the
numerator and denominator coefficients, a second order sections matrix,
or a single dfilt object, the zero–phase response of the single filter is
displayed. If the input is an array of dfilt objects, the zero–phase
responses of all filters in the array are displayed.
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Note If the input to zerophase is single precision, the zero-phase
response is calculated using single-precision arithmetic. The output, Hr,
is single precision.

Examples Example 1

Plot the zero-phase response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
zerophase(b);

Example 2

Plot the zero-phase response of an elliptic filter:

[b,a]=ellip(10,.5,20,.4);
zerophase(b,a,512,'whole');

See Also freqs | freqz | fvtool | grpdelay | invfreqz | phasedelay | phasez
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Purpose Convert zero-pole-gain filter parameters to second-order sections form

Syntax [sos,g] = zp2sos(z,p,k)
[sos,g] = zp2sos(z,p,k,'order')
[sos,g] = zp2sos(z,p,k,'order','scale')
[sos,g] = zp2sos(z,p,k,'order','scale',zeroflag)
sos = zp2sos(...)

Description zp2sos converts a discrete-time zero-pole-gain representation of a given
digital filter to an equivalent second-order section representation.

[sos,g] = zp2sos(z,p,k) creates a matrix sos in second-order section
form with gain g equivalent to the discrete-time zero-pole-gain filter
represented by input arguments z, p, and k. Vectors z and p contain the
zeros and poles of the filter’s transfer function H(z), not necessarily in
any particular order.

H z k
z z z z z z

z p z p z p
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m
( )

( )( ) ( )
( )( ) ( )
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where n and m are the lengths of z and p, respectively, and k is a scalar
gain. The zeros and poles must be real or complex conjugate pairs. sos
is an L-by-6 matrix
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whose rows contain the numerator and denominator coefficients bik and
aik of the second-order sections of H(z).
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The number L of rows of the matrix sos is the closest integer greater
than or equal to the maximum of n/2 and m/2.

[sos,g] = zp2sos(z,p,k,'order') specifies the order of the rows
in sos, where 'order' is

• 'down', to order the sections so the first row of sos contains the poles
closest to the unit circle

• 'up', to order the sections so the first row of sos contains the poles
farthest from the unit circle (default)

[sos,g] = zp2sos(z,p,k,'order','scale') specifies the desired
scaling of the gain and the numerator coefficients of all second-order
sections, where 'scale' is

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes
the probability of overflow in the realization. Using 2-norm scaling in
conjunction with down-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for
direct-form II implementations.

[sos,g] = zp2sos(z,p,k,'order','scale',zeroflag) specifies
whether to keep together real zeros that are the negatives of each
other instead of ordering them according to proximity to poles. Setting
zeroflag to true keeps the zeros together and results in a numerator
with a middle coefficient equal to zero. The default for zeroflag is
false.

sos = zp2sos(...) embeds the overall system gain, g, in the first
section, H1(z), so that
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H z H zk
k

L
( ) ( )=

=
∏

1

Note Embedding the gain in the first section when scaling a direct-form
II structure is not recommended and may result in erratic scaling. To
avoid embedding the gain, use ss2sos with two outputs.

Examples Find a second-order section form of a Butterworth lowpass filter:

[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k);

Algorithms zp2sos uses a four-step algorithm to determine the second-order section
representation for an input zero-pole-gain system:

1 It groups the zeros and poles into complex conjugate pairs using the
cplxpair function.

2 It forms the second-order section by matching the pole and zero pairs
according to the following rules:

a Match the poles closest to the unit circle with the zeros closest
to those poles.

b Match the poles next closest to the unit circle with the zeros closest
to those poles.

c Continue until all of the poles and zeros are matched.

zp2sos groups real poles into sections with the real poles closest to
them in absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to
the unit circle. zp2sos normally orders the sections with poles closest
to the unit circle last in the cascade. You can tell zp2sos to order the
sections in the reverse order by specifying the down flag.
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4 zp2sos scales the sections by the norm specified in the 'scale'
argument. For arbitrary H(ω), the scaling is defined by

H H dp
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⎥∫1

2
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2
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| ( )|

where p can be either ∞ or 2. See the references for details on the
scaling. This scaling is an attempt to minimize overflow or peak
round-off noise in fixed point filter implementations.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer
Academic Publishers, Boston, 1996, Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, New York, 1998, Chapter 9.

[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook
for Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John
Wiley & Sons, New York, 1993, Chapter 7.

See Also cplxpair | filternorm | sos2zp | ss2sos | tf2sos | zp2ss | zp2tf
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Purpose Convert zero-pole-gain filter parameters to state-space form

Syntax [A,B,C,D] = zp2ss(z,p,k)

Description zp2ss converts a zero-pole-gain representation of a given system to an
equivalent state-space representation.

[A,B,C,D] = zp2ss(z,p,k) finds a single input, multiple output,
state-space representation

x Ax Bu
y Cx Du
= +
= +

given a system in factored transfer function form.
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Column vector p specifies the pole locations, and matrix z the zero
locations with as many columns as there are outputs. The gains for
each numerator transfer function are in vector k. The A, B, C, and D
matrices are returned in controller canonical form.

Inf values may be used as place holders in z if some columns have
fewer zeros than others.

Algorithms zp2ss, for single-input systems, groups complex pairs together into
two-by-two blocks down the diagonal of the A matrix. This requires the
zeros and poles to be real or complex conjugate pairs.

See Also sos2ss | ss2zp | tf2ss | zp2sos | zp2tf
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Purpose Convert zero-pole-gain filter parameters to transfer function form

Syntax [b,a] = zp2tf(z,p,k)

Description zp2tf forms transfer function polynomials from the zeros, poles, and
gains of a system in factored form.

[b,a] = zp2tf(z,p,k) finds a rational transfer function
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given a system in factored transfer function form
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Column vector p specifies the pole locations, and matrix z specifies
the zero locations, with as many columns as there are outputs. The
gains for each numerator transfer function are in vector k. The zeros
and poles must be real or come in complex conjugate pairs. The
polynomial denominator coefficients are returned in row vector a and
the polynomial numerator coefficients are returned in matrix b, which
has as many rows as there are columns of z.

Inf values can be used as place holders in z if some columns have fewer
zeros than others.

Algorithms The system is converted to transfer function form using poly with p
and the columns of z.

See Also sos2tf | ss2tf | tf2zp | tf2zpk | zp2sos | zp2ss

1-1309



zplane

Purpose Zero-pole plot

Syntax zplane(z,p)
zplane(b,a)
zplane(Hd)
[hz,hp,ht] = zplane(z,p)

Description This function displays the poles and zeros of discrete-time systems.

zplane(z,p) plots the zeros specified in column vector z and the poles
specified in column vector p in the current figure window. The symbol
'o' represents a zero and the symbol 'x' represents a pole. The plot
includes the unit circle for reference. If z and p are arrays, zplane plots
the poles and zeros in the columns of z and p in different colors.

You can override the automatic scaling of zplane using

axis([xmin xmax ymin ymax])

or

set(gca,'ylim',[ymin ymax])

or

set(gca,'xlim',[xmin xmax])

after calling zplane. This is useful in the case where one or a few of the
zeros or poles have such a large magnitude that the others are grouped
tightly around the origin and are hard to distinguish.

zplane(b,a) where b and a are row vectors, first uses roots to find
the zeros and poles of the transfer function represented by numerator
coefficients b and denominator coefficients a. The transfer function
is defined in terms of z-1:
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zplane(Hd) finds the zeros and poles of the transfer function
represented by the dfilt filter object Hd. The pole-zero plot is displayed
in fvtool.

[hz,hp,ht] = zplane(z,p) returns vectors of handles to the zero
lines, hz, and the pole lines, hp. ht is a vector of handles to the axes/unit
circle line and to text objects, which are present when there are multiple
zeros or poles. If there are no zeros or no poles, hz or hp is the empty
matrix [].

Examples For data sampled at 1000 Hz, plot the poles and zeros of a 4th-order
elliptic lowpass digital filter with cutoff frequency of 200 Hz, 3 dB of
ripple in the passband, and 30 dB of attenuation in the stopband:

[z,p,k] = ellip(4,3,30,200/500);
zplane(z,p);
title('4th-Order Elliptic Lowpass Digital Filter');

To generate the same plot with a transfer function representation of
the filter, use:

[b,a] = ellip(4,3,30,200/500); % Transfer function
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zplane(b,a)

To generate the same plot using a dfilt object and displaying the
result in the Filter Visualization Tool (fvtool) use:

[b,a] = ellip(4,3,30,200/500);
Hd=dfilt.df1(b,a);
zplane(Hd)

See Also freqz
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IndexSymbols and Numerics
2-norm 1-491

A
abs function 1-2
ac2poly function 1-3
ac2rc function 1-4
addstages method 1-149
amdsb function 1-715
amplitude demodulation 1-136
amplitude modulation 1-715
analog filters

bandpass 1-686
bandstop 1-689
Bessel 1-26
Bessel lowpass 1-25
Butterworth 1-53
Butterworth lowpass 1-52
Butterworth order estimation 1-61
Chebyshev Type I 1-93
Chebyshev Type I order estimation 1-83
Chebyshev Type II 1-102
Chebyshev Type II order estimation 1-88
converting to digital 1-630
elliptic 1-266
elliptic order estimation 1-275
frequency response 1-563
highpass 1-691
inverse 1-647
lowpass 1-693

analysis parameters 1-582
analytic signals 1-623
angle function 1-5
AR filter stability 1-826
arcov function 1-10
armcov function 1-11
autocorrelation 1-1282

convert from LP coefficients 1-824
convert from reflection coefficients 1-895

convert to LP coefficients 1-3
convert to reflection coefficients 1-4
two-dimensional 1-1287

autocovariance 1-1294
autoregressive (AR) models

covariance method 1-10
modified covariance method 1-11
power spectral density (Burg method) 1-737
power spectral density (covariance

method) 1-746
power spectral density (modified covariance

method) 1-792
power spectral density (Yule-Walker

method) 1-882
avgpower method 1-231

B
bandpass filters

Butterworth digital 1-54
Chebyshev Type I 1-94
Chebyshev Type II 1-100
elliptic 1-266
FIR example 1-523
transform from lowpass 1-686

bandstop filters
Butterworth analog 1-55
Butterworth digital 1-54
Chebyshev Type I 1-93
Chebyshev Type II 1-101
elliptic 1-267
FIR 1-522
transform from lowpass 1-689

barthannwin Bartlett Hann window
function 1-21

bartlett window function 1-23
Bessel filters

limitations 1-27
lowpass 1-25
prototype 1-25
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besselap function 1-25
besself function 1-26
bilinear function 1-29
bilinear transformations 1-29

output 1-30
prewarping 1-29

bit reversal 1-34
bitrevorder function 1-34
blackman window function 1-36
blackmanharris window function 1-39

Nuttall 1-723
block method 1-150
bohmanwin window function 1-41
buffer function 1-43
Burg spectrum object 1-1115
buttap function 1-52
butter function 1-53
Butterworth filters 1-53

limitations 1-57
lowpass 1-52
order estimation 1-60

buttord function 1-60

C
canonical forms

naming conventions 1-1220
cascade method 1-150
Cauer filters. See elliptic filters
cceps function 1-64
cconv function 1-68
cell2sos function 1-71
centerdc method 1-231
cepstrum

inverse function 1-899
cfirpm function 1-72
cheb1ap function 1-81
cheb1ord function 1-82
cheb2ap function 1-86
cheb2ord function 1-87

chebwin Chebyshev window function 1-91
cheby1 function 1-93
cheby2 function 1-100
Chebyshev error minimization 1-543
Chebyshev Type I filters 1-93

limitations 1-97
order estimation 1-82

Chebyshev Type II filters 1-100
limitations 1-104

chirp function 1-107
chirp z-transforms 1-124
circular convolution 1-68
coding

PCM 1-1240
coefficients

convert autocorrelation to filter 1-3
convert filter to autocorrelation 1-824
convert filter to reflection 1-826
convert reflection to autocorrelation 1-895
convert reflection to filter 1-898
linear prediction 1-695
reflection 1-4

coeffs method 1-150
coherence 1-718
communications

simulation 1-136
confidence interval 1-1105
conversions

autocorrelation to filter coefficients 1-3
autocorrelation to reflection coefficients 1-4
filter coefficients to autocorrelation 1-824
filter coefficients to reflection

coefficients 1-826
reflection coefficients to

autocorrelation 1-895
reflection coefficients to filter

coefficients 1-898
second-order section to zero-pole-gain 1-1091
second-order sections to state-space 1-1087
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second-order sections to transfer
functions 1-1089

state-space to second-order sections 1-1187
state-space to zero-pole-gain 1-1192
transfer functions to lattice 1-1214
transfer functions to second-order

sections 1-1215
transfer functions to state-space 1-1219
zero-pole-gain to second-order

sections 1-1304
zero-pole-gain to state-space 1-1308

convert
dB to magnitude 1-129
dB to power 1-130
magnitude to dB 1-699
power to dB 1-830

convert method 1-150
convmtx function 1-115
convolution

circular 1-68
matrix function (convmtx) 1-115

correlation
cross-correlation 1-1281

corrmtx function 1-116
covariance

modified covariance spectrum object 1-1121
spectrum object 1-1116

cpsd function 1-119
cross correlation 1-1281
cross power spectral density 1-119
cross-correlation 1-1281

two-dimensional 1-1287
cross-covariance 1-1294
crosscorrelation 1-1281
czt function 1-124

D
dB

convert to magnitude 1-129

convert to power 1-130
db2mag function 1-129
db2pow function 1-130
dct function 1-131
de la Valle-Poussin windows. See Parzen

windows
decimate 1-133
decode 1-1237
delay 1-162
demod function 1-136
demodulation 1-136
dfilt function 1-146

cascade 1-160
convert structures 1-157
copying 1-157
delay 1-162
direct-form antisymmetric FIR 1-185
direct-form FIR transposed 1-191
direct-form I 1-164
direct-form I sos 1-167
direct-form I transposed 1-170
direct-form I transposed sos 1-172
direct-form II 1-175
direct-form II sos 1-178
direct-form II transposed 1-181
direct-form II transposed sos 1-183
direct-form IIR 1-189
direct-form symmetric FIR 1-193
FFT FIR 1-197
lattice allpass 1-199
lattice ARMA 1-203
lattice autoregressive 1-201
lattice moving-average maximum 1-205
lattice moving-average minimum 1-207
methods 1-148
parallel 1-209
scalar 1-212
state space 1-214
structures 1-146

dfilt.cascade function 1-160

Index-3



Index

dfilt.delay function 1-162
dfilt.df1 function 1-164
dfilt.df1sos function 1-167
dfilt.df1t function 1-170
dfilt.df1tsos function 1-172
dfilt.df2 function 1-175
dfilt.df2sos function 1-178
dfilt.df2t function 1-181
dfilt.df2tsos function 1-183
dfilt.dfasymfir function 1-185
dfilt.dffir function 1-189
dfilt.dffirt function 1-191
dfilt.dfsymfir function 1-193
dfilt.fftfir function 1-197
dfilt.latticeallpass function 1-199
dfilt.latticear function 1-201
dfilt.latticearma function 1-203
dfilt.latticemamax function 1-205
dfilt.latticemamin function 1-207
dfilt.parallel function 1-209
dfilt.scalar function 1-212
dfilt.statespace function 1-214
dftmtx function 1-216
differentiators

least square linear-phase FIR 1-540
Parks-McClellan FIR 1-545

digit reversal 1-217
digital filters

Butterworth 1-53
Butterworth order estimation 1-60
Chebyshev Type I order estimation 1-82
Chebyshev Type II 1-100
Chebyshev Type II order estimation 1-87
elliptic 1-266
elliptic order estimation 1-274
equiripple FIR order estimation 1-551
FFT FIR overlap-add 1-359
group delay function 1-614
identification from frequency data 1-651
impulse response 1-633

zero-phase 1-493
digitrevorder function 1-217
diric function 1-219
Dirichlet functions 1-219
discrete cosine transforms 1-131

inverse 1-627
discrete Fourier transforms

matrix 1-216
discretization 1-630
downsample function 1-220
dpssclear function 1-225
dpssdir function 1-226
dpssload function 1-227
dspdata object 1-230

mean-square spectrum 1-238
psd 1-243
pseudospectrum 1-249

dspdata.msspectrumd function 1-238
dspdata.psd function 1-243
dspdata.pseudospectrum function 1-249

E
eigenvector method 1-760

root MUSIC 1-923
spectrum object 1-1117

ellip function 1-266
ellipap function 1-273
ellipord function 1-274
elliptic filters 1-266

limitations 1-270
order estimation 1-274

encoding 1-1240
eqtflength function 1-286
equiripple

elliptic filters (analog) 1-273
elliptic filters (Cauer) 1-266
Parks-McClellan design 1-543

estimation
covariance method 1-10
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modified covariance method 1-11
export

window 1-1274

F
fast Walsh-Hadamard transform 1-597
fcfwrite method 1-151
fdatool GUI 1-295
fdesign

reference 1-297
fftcoeffs method 1-151
fftfilt function 1-359
filter function 1-363
filter method 1-151
Filter Visualization Tool. See fvtool GUI
filternorm function 1-491
filters

analog lowpass 1-25
analog lowpass prototype 1-52
bit reversal 1-34
Butterworth 1-53
Butterworth order 1-60
Chebyshev Type I 1-93
Chebyshev Type I order 1-82
Chebyshev Type II 1-100
Chebyshev Type II order 1-87
convert coefficients to autocorrelation 1-824
convert from reflection coefficients 1-898
convert to reflection coefficients 1-826
digit reversal 1-217
elliptic 1-266
elliptic order 1-274
filtstates object 1-505
FIR 1-543
frequency data 1-647
fvtool GUI 1-575
initial conditions using dfilt 1-158
initial conditions using filtic

function 1-500

inverse analog 1-647
inverse discrete-time 1-651
median function 1-705
minimum phase 1-829
norm 1-491
numerator and denominator length 1-286
objects 1-146
overlap-add using dfilt.fftfir 1-197
overlap-add using fftfilt 1-359
phase delay 1-783
phase response 1-787
Savitzky-Golay 1-961
Savitzky-Golay design 1-957
Schur realizations 1-933
second-order sections filtering 1-1093
second-order sections IIR 1-1093
states 1-158
step response 1-1200
viewing 1-575
zero-phase 1-493
zero-phase response 1-1301

filtfilt function 1-493
filtic function 1-500
filtstates

structures 1-505
filtstates object 1-505 1-507
findpeaks method 1-232
FIR filters

complex response 1-72
frequency response 1-525
interpolation 1-645
least square linear phase 1-538
linear phase Parks-McClellan 1-543
nonlinear phase response 1-72
order estimation 1-551
overlap-add 1-359
types 1-548
window-based 1-521

fir1 function 1-521
fir2 function 1-525
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fircls function 1-528
fircls1 function 1-533
firls function 1-538
firpm function 1-543

filter characteristics 1-548
order estimation 1-551

firpmord function 1-551
firrcos function 1-555
firtype method 1-152
flattopwin flat top window function 1-560
freqs function 1-563
frequency

demodulation 1-137
modulation 1-715
prewarping 1-29
spectrogram 1-1095

frequency domain
lowpass to bandpass transformation 1-686
lowpass to bandstop transformation 1-689
lowpass to highpass transformation 1-691

frequency modulation 1-716
frequency response

inverse 1-647
freqz function 1-570
freqz method 1-152
functions

shiftdata 1-963
unshiftdata 1-1243

FVTool
SOS view settings 1-585

fvtool GUI 1-575
fwht function 1-597

G
gauspuls function 1-599
Gauss-Newton method

analog domain 1-649
discrete domain 1-653

gaussfir 1-601

Gaussian monopulse 1-608
gausswin Gaussian window function 1-603
generate method 1-968
gmonopuls function 1-608
GMSK 1-601
group delay

grpdelay function 1-614
grpdelay function 1-614
grpdelay method 1-152

H
halfrange method 1-233
hamming window function 1-619
hann window function 1-621
hanning. See hann window function
highpass filters

Butterworth analog 1-55
Butterworth digital 1-53
Butterworth order 1-61
Chebyshev Type I 1-93
Chebyshev Type I order 1-83
Chebyshev Type II 1-101
Chebyshev Type II order 1-88
elliptic 1-267
elliptic order 1-275
FIR 1-523
lowpass transformation 1-691

hilbert transform function 1-623
using firls 1-539
using firpm 1-545

I
icceps function 1-626
idct function 1-627
ifwht function 1-628
IIR filters

Levinson-Durbin recursion 1-684
Steiglitz-McBride iteration 1-1206
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yulewalk function 1-1298
impinvar function 1-630
impulse invariance 1-630
impulse response

impz function 1-633
impz function 1-633
impz method 1-152
impzlength method 1-152
inf-norm 1-491
info method

dfilt function 1-152
sigwin function 1-968

initial conditions
using dfilt states 1-158
using filtic function 1-500

interpolation
bandlimited 1-1076
FIR filters 1-645
interp function 1-642

intfilt function 1-645
inverse discrete cosine transforms 1-627
inverse discrete Fourier transforms

matrices 1-216
inverse fast Walsh-Hadamard transform 1-628
inverse filters

analog 1-647
discrete 1-651

inverse Walsh-Hadamard transform 1-628
inverse-sine parameters

transformations from reflection
coefficients 1-670

transformations to reflection
coefficients 1-896

invfreqs function 1-647
invfreqz function 1-651
is2rc function 1-670
isallpass method 1-152
iscascade method 1-152
isfir method 1-152
islinphase method 1-152

ismaxphase method 1-152
isminphase method 1-153
isparallel method 1-153
isreal method 1-153
isscalar method 1-153
issos method 1-153
isstable method 1-153

K
kaiser window function 1-671
kaiserord function 1-673

L
Lagrange interpolation filter 1-645
lar2rc function 1-680
latc2tf function 1-681
latcfilt function 1-682
lattice/ladder filters

Schur algorithm 1-933
transfer functions conversions 1-1214

least squares method FIR 1-538
levinson function 1-684
line spectral frequencies

transformation from prediction
polynomial 1-825

transformation to prediction
polynomial 1-698

linear phase filters
least squares FIR 1-538
optimal FIR 1-543

linear prediction
coefficients 1-695

log area ratio parameters
transformation from reflection

coefficients 1-680
transformation to reflection

coefficients 1-897
lowpass filters
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Bessel 1-26
Butterworth 1-53
Butterworth analog 1-55
Butterworth digital 1-53
Butterworth order 1-61
Chebyshev Type I 1-93
Chebyshev Type I order 1-83
Chebyshev Type II 1-100
Chebyshev Type II order 1-88
cutoff frequency translation 1-693
decimation 1-133
elliptic 1-266
elliptic order 1-275
interpolation 1-642

lp2bp function 1-686
lp2bs function 1-689
lp2hp function 1-691
lp2lp function 1-693
lpc function 1-695
lsf2poly function 1-698

M
mag2db function 1-699
magnitude

convert to dB 1-699
marcumq function 1-700
match frequency prewarping 1-29
matrices

convolution function 1-115
discrete Fourier transforms 1-216
inverse discrete Fourier transforms 1-216

maxflat function 1-702
mean-square spectrum 1-238
medfilt1 function 1-705
median filters. See medfilt1 function
minimum phase 1-829
models

autoregressive Burg PSD 1-737
autoregressive covariance 1-10

autoregressive covariance PSD 1-746
autoregressive modified covariance 1-11
autoregressive modified covariance

PSD 1-792
autoregressive Yule-Walker PSD 1-882

modulate function 1-715
See also amplitude modulation

mscohere function 1-718
msspectrum method 1-1104
msspectrumopts method 1-1105
multi-taper spectrum object 1-1122
multiple signal classification method (MUSIC)

eigenvector method 1-760
pseudospectrum 1-815

MUSIC spectrum object 1-1125

N
normalization

cross-correlation 1-1282
normalizefreq method 1-233
nsections method 1-153
nstages method 1-153
nstate method 1-153
nuttallwin Nuttall window function 1-723

O
object

changing properties 1-157
copying 1-1113
dspdata 1-230
filter 1-146
filtstates 1-505
spectrum 1-1101
viewing properties 1-156
window 1-967

onesided method 1-233
order

bit reversed 1-34
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Butterworth estimation 1-60
Chebyshev Type I estimation 1-82
digit reversed 1-217
elliptic estimation 1-274
FIR optimal estimation 1-551

order method 1-153
oscillators 1-1264
overlap-add filter 1-197
overlap-add method

FIR filters 1-359

P
parallel method 1-153
parametric modeling

covariance method 1-10
modified covariance method 1-11

Parks-McClellan algorithm 1-543
partial fraction expansion

z-transform 1-905
parzenwin Parzen window function 1-735
pburg function 1-737
PCM 1-1240
pcov function 1-746
peig function 1-760
period in sequence 1-947
periodic sinc functions 1-219

See also Dirichlet functions
periodogram function

spectrum object 1-1129
phase

demodulation 1-137
group delay 1-614
modulation 1-716

phase response 1-787
phasedelay function 1-783
phasez function 1-787
phasez method 1-153
plot method 1-234
plots

strip plots 1-1210
zplane function 1-1310

pmcov function 1-792
pmusic function 1-815
poly2ac function 1-824
poly2lsf function 1-825
poly2rc function 1-826
polynomials

scaling 1-829
stability check 1-826
stabilization 1-828

polyscale function 1-828
polystab function 1-829
pow2db function 1-830
power

convert to dB 1-830
power spectral density

Burg estimation 1-737
covariance estimation 1-746
dspdata object 1-243
eigenvector estimation 1-923
modified covariance estimation 1-792
MUSIC estimation 1-815
Yule-Walker estimation 1-882

powerest method 1-1111
prediction polynomials

transformations from line spectral
frequencies 1-698

transformations to line spectral
frequencies 1-825

prewarping 1-29
psd method 1-1107
psdopts method 1-1108
pseudospectrum object 1-249

eigenvector method 1-760
MUSIC algorithm 1-822

pseudospectrumopts object 1-1111
pulse position demodulation 1-137
pulse time modulation 1-717
pulse train generator 1-866
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pulse trains
Prony’s method 1-866

pulse width demodulation 1-138
pulse width modulation 1-717
pulse-shaping filter 1-601
pyulear function 1-882

Q
quadrature amplitude demodulation 1-138
quadrature amplitude modulation 1-717
quantization

decoding 1-1237
encoding 1-1240
reduction with filter norms 1-491

quantized filters
cell array coefficients 1-1086
matrix coefficients 1-71

R
radar

Taylor window 1-1212
raised cosine filters 1-555
rc2ac function 1-895
rc2is function 1-896
rc2lar function 1-897
rc2poly function 1-898
rceps function 1-899
realizemdl method 1-155
rebuffering 1-43
rectangular windows

rectwin function 1-901
rectpuls function 1-900
rectwin function 1-901
reflection coefficients

autocorrelation sequence conversion 1-895
conversion from filter coefficients 1-826
conversion to prediction polynomial 1-898
Schur algorithm 1-933

transformation from inverse sine
parameters 1-896

transformation from log area ratio
parameters 1-897

transformation to inverse sine parameters
transformation to 1-670

transformation to log area ratio
parameters 1-680

Remez exchange algorithm 1-543
removestage method 1-155
resample function 1-902
residuez function 1-905
rlevinson function 1-917
rooteig function 1-923
rootmusic function 1-926

eigenvector method 1-923

S
sampling frequency

decrease 1-220
increase 1-1251
integer factor decrease 1-133
integer factor increase 1-642
Nyquist interval 1-266
resample function 1-902

Savitzky-Golay filters
design 1-957
filtering 1-961

sawtooth function 1-932
scaling 1-828
Schur algorithm 1-933
schurrc function 1-933
second-order section forms

zero-pole-gain conversion to 1-1091
second-order sections

cell array coefficients 1-1086
conversion from transfer function 1-1215
conversion to transfer functions 1-1089
filter 1-1093
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filters 1-1093
matrix coefficients 1-71
state-space conversion from 1-1187
state-space conversion to 1-1087
view 1-585
zero-pole-gain conversion from 1-1304

seqperiod function 1-947
setstage method 1-155
sfdr method 1-234
sgolay function 1-957
sgolayfilt function 1-961
shiftdata function 1-963
signals

buffering 1-43
minimum phase reconstruction

example 1-899
modulation 1-715
rebuffering 1-43
sawtooth function 1-932
square function 1-1186
triangle 1-932

sigwin function 1-967
sinc function 1-1076

Dirichlet 1-219
sos method 1-155
SOS view settings 1-585
sos2cell function 1-1086
sos2ss function 1-1087
sos2tf function 1-1089
sos2zp function 1-1091
sosfilt function 1-1093
spectral estimation

AR covariance method 1-10
AR modified covariance method 1-11
Burg method 1-737
covariance method 1-746
eigenvector method 1-760
modified covariance method 1-792
MUSIC method 1-816
root eigenvector 1-923

root MUSIC 1-926
Yule-Walker AR method 1-882

spectrogram 1-1095
VCO example 1-1264

spectrogram function 1-1095
spectrum estimation methods 1-230

mean-square 1-238
psd 1-243
pseudospectrum 1-249

spectrum function 1-1101
burg 1-1115
cov 1-1116
eigenvector 1-1117
estimation methods 1-1101
mcov 1-1121
methods 1-1102
mtm 1-1122
music 1-1125
periodogram 1-1129
welch 1-1132
yulear 1-1137

sptool GUI 1-1138
square function 1-1186
ss method 1-156
ss2sos function 1-1187
ss2tf function 1-1191
ss2zp function 1-1192
stability check

polynomials 1-826
stabilization 1-829
state-space forms

second-order section conversion from 1-1087
second-order section conversion to 1-1187
transfer functions conversions to 1-1219
zero-pole-gain conversion from 1-1308
zero-pole-gain conversion to 1-1192

Steiglitz-McBride method 1-1206
step response 1-1200
stepz function 1-1200
stepz method 1-156
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stmcb function 1-1206
strips function plots 1-1210
swept-frequency cosine generator. See chirp
sysobj method 1-156

T
taylorwindow 1-1212
tf method 1-156
tf2latc function 1-1214
tf2sos function 1-1215
tf2ss function 1-1219
tf2zp function 1-1221
tfestimate function 1-1226
transfer functions

lattice conversion to 1-1214
second-order sections conversion from 1-1089
second-order sections conversion to 1-1215
state-space conversion to 1-1219

transformations
bilinear function 1-29
lowpass analog to bandpass 1-686
lowpass analog to bandstop 1-689
lowpass analog to highpass 1-691
lowpass cutoff change 1-693

transforms
chirp z-transforms (CZT) 1-124
discrete cosine 1-131
hilbert 1-623
inverse discrete cosine 1-627

transposed direct-form II
initial conditions 1-500

triang triangle window function 1-1230
tripuls function 1-1232
Tukey window function. See tukeywin
tukeywin 1-1234
twosided method 1-235

U
udecode function 1-1237
uencode function 1-1240
uniform encoding 1-1240
unit circle 1-829
unshiftdata function 1-1243
upfirdn function 1-1246
upsample function 1-1251

V
vco function 1-1264
vectors

weighting 1-539
voltage controlled oscillators 1-1264

W
Walsh-Hadamard transform 1-597
Welch spectrum object 1-1132
wholerange method 1-235
window function 1-1266
windows

Bartlett 1-23
Bartlett-Hanning 1-21
Blackman 1-36
Blackman-Harris 1-39
Blackman-Harris vs. Nuttall 1-723
Bohman 1-41
Chebyshev 1-91
de la Valle-Poussin 1-735
designing 1-1271
FIR filters 1-521
flat top weighted 1-560
Gaussian 1-603
Hamming 1-619
Hann 1-621
Kaiser 1-671
Nuttall 1-723
object 1-967
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Parzen 1-735
rectangular 1-901
Taylor 1-1212
triangular 1-1230
Tukey 1-1234
viewing 1-1277
wintool GUI 1-1271
wvtool GUI 1-1277

wintool GUI 1-1271
winwrite method 1-968
wvtool GUI 1-1277

X
xcorr function 1-1281
xcorr2 function 1-1287
xcov function 1-1294

Y
Yule-Walker spectrum object 1-1137
yulewalk function 1-1298

Z
z-transforms

czt function 1-124
zero-order hold. See averaging filters
zero-phase

filtering 1-493
response 1-1301

zero-pole
analysis 1-1310

zero-pole-gain forms
convert from second-order sections 1-1091
convert from state-space 1-1192
convert to second-order sections 1-1304
convert to state-space 1-1308

zerophase function 1-1301
zerophase method 1-156
zp2sos function 1-1304
zp2ss function 1-1308
zp2tf function 1-1309
zpk method 1-156
zplane function 1-1310
zplane method 1-156
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